Solve for h
\left\{\begin{matrix}\\h=\frac{2048\pi }{343}\approx 18.757964299\text{, }&\text{unconditionally}\\h\in \mathrm{R}\text{, }&r=0\end{matrix}\right.
Solve for r
\left\{\begin{matrix}\\r=0\text{, }&\text{unconditionally}\\r\in \mathrm{R}\text{, }&h=\frac{2048\pi }{343}\end{matrix}\right.
Share
Copied to clipboard
4\pi r^{3}=h\times \left(\frac{1.75r}{2}\right)^{3}
Multiply both sides of the equation by 3.
4\pi r^{3}=h\times \left(0.875r\right)^{3}
Divide 1.75r by 2 to get 0.875r.
4\pi r^{3}=h\times 0.875^{3}r^{3}
Expand \left(0.875r\right)^{3}.
4\pi r^{3}=h\times 0.669921875r^{3}
Calculate 0.875 to the power of 3 and get 0.669921875.
h\times 0.669921875r^{3}=4\pi r^{3}
Swap sides so that all variable terms are on the left hand side.
\frac{343r^{3}}{512}h=4\pi r^{3}
The equation is in standard form.
\frac{512\times \frac{343r^{3}}{512}h}{343r^{3}}=\frac{512\times 4\pi r^{3}}{343r^{3}}
Divide both sides by 0.669921875r^{3}.
h=\frac{512\times 4\pi r^{3}}{343r^{3}}
Dividing by 0.669921875r^{3} undoes the multiplication by 0.669921875r^{3}.
h=\frac{2048\pi }{343}
Divide 4\pi r^{3} by 0.669921875r^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}