Solve for a
a=\frac{9b+c+85}{2}
Solve for b
b=\frac{2a-c-85}{9}
Share
Copied to clipboard
85-2a+9b+c=0
Add 4 and 81 to get 85.
-2a+9b+c=-85
Subtract 85 from both sides. Anything subtracted from zero gives its negation.
-2a+c=-85-9b
Subtract 9b from both sides.
-2a=-85-9b-c
Subtract c from both sides.
-2a=-9b-c-85
The equation is in standard form.
\frac{-2a}{-2}=\frac{-9b-c-85}{-2}
Divide both sides by -2.
a=\frac{-9b-c-85}{-2}
Dividing by -2 undoes the multiplication by -2.
a=\frac{9b+c+85}{2}
Divide -85-9b-c by -2.
85-2a+9b+c=0
Add 4 and 81 to get 85.
-2a+9b+c=-85
Subtract 85 from both sides. Anything subtracted from zero gives its negation.
9b+c=-85+2a
Add 2a to both sides.
9b=-85+2a-c
Subtract c from both sides.
9b=2a-c-85
The equation is in standard form.
\frac{9b}{9}=\frac{2a-c-85}{9}
Divide both sides by 9.
b=\frac{2a-c-85}{9}
Dividing by 9 undoes the multiplication by 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}