Evaluate
\frac{26}{3}\approx 8.666666667
Factor
\frac{2 \cdot 13}{3} = 8\frac{2}{3} = 8.666666666666666
Share
Copied to clipboard
4+16+\frac{-3}{2!}\times 4+\frac{-4}{3!}\times 8
Multiply 8 and 2 to get 16.
20+\frac{-3}{2!}\times 4+\frac{-4}{3!}\times 8
Add 4 and 16 to get 20.
20+\frac{-3}{2}\times 4+\frac{-4}{3!}\times 8
The factorial of 2 is 2.
20-\frac{3}{2}\times 4+\frac{-4}{3!}\times 8
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
20+\frac{-3\times 4}{2}+\frac{-4}{3!}\times 8
Express -\frac{3}{2}\times 4 as a single fraction.
20+\frac{-12}{2}+\frac{-4}{3!}\times 8
Multiply -3 and 4 to get -12.
20-6+\frac{-4}{3!}\times 8
Divide -12 by 2 to get -6.
14+\frac{-4}{3!}\times 8
Subtract 6 from 20 to get 14.
14+\frac{-4}{6}\times 8
The factorial of 3 is 6.
14-\frac{2}{3}\times 8
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
14+\frac{-2\times 8}{3}
Express -\frac{2}{3}\times 8 as a single fraction.
14+\frac{-16}{3}
Multiply -2 and 8 to get -16.
14-\frac{16}{3}
Fraction \frac{-16}{3} can be rewritten as -\frac{16}{3} by extracting the negative sign.
\frac{42}{3}-\frac{16}{3}
Convert 14 to fraction \frac{42}{3}.
\frac{42-16}{3}
Since \frac{42}{3} and \frac{16}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{26}{3}
Subtract 16 from 42 to get 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}