Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12=\frac{1}{2}\left(x+1\right)^{2}
Add 4 and 8 to get 12.
12=\frac{1}{2}\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
12=\frac{1}{2}x^{2}+x+\frac{1}{2}
Use the distributive property to multiply \frac{1}{2} by x^{2}+2x+1.
\frac{1}{2}x^{2}+x+\frac{1}{2}=12
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x^{2}+x+\frac{1}{2}-12=0
Subtract 12 from both sides.
\frac{1}{2}x^{2}+x-\frac{23}{2}=0
Subtract 12 from \frac{1}{2} to get -\frac{23}{2}.
x=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{2}\left(-\frac{23}{2}\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 1 for b, and -\frac{23}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times \frac{1}{2}\left(-\frac{23}{2}\right)}}{2\times \frac{1}{2}}
Square 1.
x=\frac{-1±\sqrt{1-2\left(-\frac{23}{2}\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-1±\sqrt{1+23}}{2\times \frac{1}{2}}
Multiply -2 times -\frac{23}{2}.
x=\frac{-1±\sqrt{24}}{2\times \frac{1}{2}}
Add 1 to 23.
x=\frac{-1±2\sqrt{6}}{2\times \frac{1}{2}}
Take the square root of 24.
x=\frac{-1±2\sqrt{6}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{2\sqrt{6}-1}{1}
Now solve the equation x=\frac{-1±2\sqrt{6}}{1} when ± is plus. Add -1 to 2\sqrt{6}.
x=2\sqrt{6}-1
Divide -1+2\sqrt{6} by 1.
x=\frac{-2\sqrt{6}-1}{1}
Now solve the equation x=\frac{-1±2\sqrt{6}}{1} when ± is minus. Subtract 2\sqrt{6} from -1.
x=-2\sqrt{6}-1
Divide -1-2\sqrt{6} by 1.
x=2\sqrt{6}-1 x=-2\sqrt{6}-1
The equation is now solved.
12=\frac{1}{2}\left(x+1\right)^{2}
Add 4 and 8 to get 12.
12=\frac{1}{2}\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
12=\frac{1}{2}x^{2}+x+\frac{1}{2}
Use the distributive property to multiply \frac{1}{2} by x^{2}+2x+1.
\frac{1}{2}x^{2}+x+\frac{1}{2}=12
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x^{2}+x=12-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
\frac{1}{2}x^{2}+x=\frac{23}{2}
Subtract \frac{1}{2} from 12 to get \frac{23}{2}.
\frac{\frac{1}{2}x^{2}+x}{\frac{1}{2}}=\frac{\frac{23}{2}}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{1}{\frac{1}{2}}x=\frac{\frac{23}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+2x=\frac{\frac{23}{2}}{\frac{1}{2}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
x^{2}+2x=23
Divide \frac{23}{2} by \frac{1}{2} by multiplying \frac{23}{2} by the reciprocal of \frac{1}{2}.
x^{2}+2x+1^{2}=23+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=23+1
Square 1.
x^{2}+2x+1=24
Add 23 to 1.
\left(x+1\right)^{2}=24
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{24}
Take the square root of both sides of the equation.
x+1=2\sqrt{6} x+1=-2\sqrt{6}
Simplify.
x=2\sqrt{6}-1 x=-2\sqrt{6}-1
Subtract 1 from both sides of the equation.