Solve for p
p = \frac{90}{19} = 4\frac{14}{19} \approx 4.736842105
Share
Copied to clipboard
4+2p=16\times \frac{3}{5}p-32
Use the distributive property to multiply 16 by \frac{3}{5}p-2.
4+2p=\frac{16\times 3}{5}p-32
Express 16\times \frac{3}{5} as a single fraction.
4+2p=\frac{48}{5}p-32
Multiply 16 and 3 to get 48.
4+2p-\frac{48}{5}p=-32
Subtract \frac{48}{5}p from both sides.
4-\frac{38}{5}p=-32
Combine 2p and -\frac{48}{5}p to get -\frac{38}{5}p.
-\frac{38}{5}p=-32-4
Subtract 4 from both sides.
-\frac{38}{5}p=-36
Subtract 4 from -32 to get -36.
p=-36\left(-\frac{5}{38}\right)
Multiply both sides by -\frac{5}{38}, the reciprocal of -\frac{38}{5}.
p=\frac{-36\left(-5\right)}{38}
Express -36\left(-\frac{5}{38}\right) as a single fraction.
p=\frac{180}{38}
Multiply -36 and -5 to get 180.
p=\frac{90}{19}
Reduce the fraction \frac{180}{38} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}