Solve for b
b=-\frac{2\sqrt{3}}{3}+4\approx 2.845299462
Share
Copied to clipboard
4+4\sqrt{3}+3=9+b\sqrt{3}
Combine 2\sqrt{3} and 2\sqrt{3} to get 4\sqrt{3}.
7+4\sqrt{3}=9+b\sqrt{3}
Add 4 and 3 to get 7.
9+b\sqrt{3}=7+4\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{3}=7+4\sqrt{3}-9
Subtract 9 from both sides.
b\sqrt{3}=-2+4\sqrt{3}
Subtract 9 from 7 to get -2.
\sqrt{3}b=4\sqrt{3}-2
The equation is in standard form.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{4\sqrt{3}-2}{\sqrt{3}}
Divide both sides by \sqrt{3}.
b=\frac{4\sqrt{3}-2}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
b=-\frac{2\sqrt{3}}{3}+4
Divide -2+4\sqrt{3} by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}