Solve for W
W<-\frac{14}{5}
Share
Copied to clipboard
14<\left(-W\right)\times 5
Add 4 and 10 to get 14.
\left(-W\right)\times 5>14
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
-W>\frac{14}{5}
Divide both sides by 5. Since 5 is positive, the inequality direction remains the same.
W<\frac{\frac{14}{5}}{-1}
Divide both sides by -1. Since -1 is negative, the inequality direction is changed.
W<\frac{14}{5\left(-1\right)}
Express \frac{\frac{14}{5}}{-1} as a single fraction.
W<\frac{14}{-5}
Multiply 5 and -1 to get -5.
W<-\frac{14}{5}
Fraction \frac{14}{-5} can be rewritten as -\frac{14}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}