Evaluate
\frac{\sqrt{2}}{2}+\sqrt{3}+3\approx 5.439157589
Factor
\frac{\sqrt{2} + 2 \sqrt{3} + 6}{2} = 5.439157588755425
Share
Copied to clipboard
3+\frac{\sqrt{2}}{2}-\sqrt{3}+\sqrt{12}
Subtract 1 from 4 to get 3.
3+\frac{\sqrt{2}}{2}-\sqrt{3}+2\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
3+\frac{\sqrt{2}}{2}+\sqrt{3}
Combine -\sqrt{3} and 2\sqrt{3} to get \sqrt{3}.
\frac{2\left(3+\sqrt{3}\right)}{2}+\frac{\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3+\sqrt{3} times \frac{2}{2}.
\frac{2\left(3+\sqrt{3}\right)+\sqrt{2}}{2}
Since \frac{2\left(3+\sqrt{3}\right)}{2} and \frac{\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{6+2\sqrt{3}+\sqrt{2}}{2}
Do the multiplications in 2\left(3+\sqrt{3}\right)+\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}