Solve for x
x\leq 9
Graph
Share
Copied to clipboard
12+x+3\geq 3x-3
Multiply both sides of the equation by 3. Since 3 is positive, the inequality direction remains the same.
15+x\geq 3x-3
Add 12 and 3 to get 15.
15+x-3x\geq -3
Subtract 3x from both sides.
15-2x\geq -3
Combine x and -3x to get -2x.
-2x\geq -3-15
Subtract 15 from both sides.
-2x\geq -18
Subtract 15 from -3 to get -18.
x\leq \frac{-18}{-2}
Divide both sides by -2. Since -2 is negative, the inequality direction is changed.
x\leq 9
Divide -18 by -2 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}