Evaluate
\frac{305}{72}\approx 4.236111111
Factor
\frac{5 \cdot 61}{2 ^ {3} \cdot 3 ^ {2}} = 4\frac{17}{72} = 4.236111111111111
Share
Copied to clipboard
4+\frac{1}{4+\frac{1}{\frac{16}{4}+\frac{1}{4}}}
Convert 4 to fraction \frac{16}{4}.
4+\frac{1}{4+\frac{1}{\frac{16+1}{4}}}
Since \frac{16}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
4+\frac{1}{4+\frac{1}{\frac{17}{4}}}
Add 16 and 1 to get 17.
4+\frac{1}{4+1\times \frac{4}{17}}
Divide 1 by \frac{17}{4} by multiplying 1 by the reciprocal of \frac{17}{4}.
4+\frac{1}{4+\frac{4}{17}}
Multiply 1 and \frac{4}{17} to get \frac{4}{17}.
4+\frac{1}{\frac{68}{17}+\frac{4}{17}}
Convert 4 to fraction \frac{68}{17}.
4+\frac{1}{\frac{68+4}{17}}
Since \frac{68}{17} and \frac{4}{17} have the same denominator, add them by adding their numerators.
4+\frac{1}{\frac{72}{17}}
Add 68 and 4 to get 72.
4+1\times \frac{17}{72}
Divide 1 by \frac{72}{17} by multiplying 1 by the reciprocal of \frac{72}{17}.
4+\frac{17}{72}
Multiply 1 and \frac{17}{72} to get \frac{17}{72}.
\frac{288}{72}+\frac{17}{72}
Convert 4 to fraction \frac{288}{72}.
\frac{288+17}{72}
Since \frac{288}{72} and \frac{17}{72} have the same denominator, add them by adding their numerators.
\frac{305}{72}
Add 288 and 17 to get 305.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}