Evaluate
\frac{4\left(x\left(x+13\right)+9\right)}{3}
Expand
\frac{4x^{2}}{3}+\frac{52x}{3}+12
Graph
Share
Copied to clipboard
12+2x\left(3+\frac{10+2x+7}{3}\right)
Add 4 and 8 to get 12.
12+2x\left(3+\frac{17+2x}{3}\right)
Add 10 and 7 to get 17.
12+2x\left(\frac{3\times 3}{3}+\frac{17+2x}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{3}{3}.
12+2x\times \frac{3\times 3+17+2x}{3}
Since \frac{3\times 3}{3} and \frac{17+2x}{3} have the same denominator, add them by adding their numerators.
12+2x\times \frac{9+17+2x}{3}
Do the multiplications in 3\times 3+17+2x.
12+2x\times \frac{26+2x}{3}
Combine like terms in 9+17+2x.
12+\frac{2\left(26+2x\right)}{3}x
Express 2\times \frac{26+2x}{3} as a single fraction.
12+\frac{52+4x}{3}x
Use the distributive property to multiply 2 by 26+2x.
12+\frac{\left(52+4x\right)x}{3}
Express \frac{52+4x}{3}x as a single fraction.
\frac{12\times 3}{3}+\frac{\left(52+4x\right)x}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 12 times \frac{3}{3}.
\frac{12\times 3+\left(52+4x\right)x}{3}
Since \frac{12\times 3}{3} and \frac{\left(52+4x\right)x}{3} have the same denominator, add them by adding their numerators.
\frac{36+52x+4x^{2}}{3}
Do the multiplications in 12\times 3+\left(52+4x\right)x.
12+2x\left(3+\frac{10+2x+7}{3}\right)
Add 4 and 8 to get 12.
12+2x\left(3+\frac{17+2x}{3}\right)
Add 10 and 7 to get 17.
12+2x\left(\frac{3\times 3}{3}+\frac{17+2x}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{3}{3}.
12+2x\times \frac{3\times 3+17+2x}{3}
Since \frac{3\times 3}{3} and \frac{17+2x}{3} have the same denominator, add them by adding their numerators.
12+2x\times \frac{9+17+2x}{3}
Do the multiplications in 3\times 3+17+2x.
12+2x\times \frac{26+2x}{3}
Combine like terms in 9+17+2x.
12+\frac{2\left(26+2x\right)}{3}x
Express 2\times \frac{26+2x}{3} as a single fraction.
12+\frac{52+4x}{3}x
Use the distributive property to multiply 2 by 26+2x.
12+\frac{\left(52+4x\right)x}{3}
Express \frac{52+4x}{3}x as a single fraction.
\frac{12\times 3}{3}+\frac{\left(52+4x\right)x}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 12 times \frac{3}{3}.
\frac{12\times 3+\left(52+4x\right)x}{3}
Since \frac{12\times 3}{3} and \frac{\left(52+4x\right)x}{3} have the same denominator, add them by adding their numerators.
\frac{36+52x+4x^{2}}{3}
Do the multiplications in 12\times 3+\left(52+4x\right)x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}