Solve for x
\left\{\begin{matrix}\\x=10\ln(3)\approx 10.986122887\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=0\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=10\ln(3)\end{matrix}\right.
Graph
Share
Copied to clipboard
ye^{0.1x}=3y
Swap sides so that all variable terms are on the left hand side.
e^{0.1x}=3
Divide both sides by y.
\log(e^{0.1x})=\log(3)
Take the logarithm of both sides of the equation.
0.1x\log(e)=\log(3)
The logarithm of a number raised to a power is the power times the logarithm of the number.
0.1x=\frac{\log(3)}{\log(e)}
Divide both sides by \log(e).
0.1x=\log_{e}\left(3\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(3)}{0.1}
Multiply both sides by 10.
3y-ye^{0.1x}=0
Subtract ye^{0.1x} from both sides.
-ye^{0.1x}+3y=0
Reorder the terms.
\left(-e^{0.1x}+3\right)y=0
Combine all terms containing y.
\left(3-e^{\frac{x}{10}}\right)y=0
The equation is in standard form.
y=0
Divide 0 by 3-e^{0.1x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}