Solve for x (complex solution)
x\in \mathrm{C}
Solve for y (complex solution)
y\in \mathrm{C}
Solve for x
x\in \mathrm{R}
Solve for y
y\in \mathrm{R}
Graph
Share
Copied to clipboard
3xy+3x+3y+2=\left(3x+3\right)\left(y+1\right)-1
Use the distributive property to multiply 3 by x+1.
3xy+3x+3y+2=3xy+3x+3y+3-1
Use the distributive property to multiply 3x+3 by y+1.
3xy+3x+3y+2=3xy+3x+3y+2
Subtract 1 from 3 to get 2.
3xy+3x+3y+2-3xy=3x+3y+2
Subtract 3xy from both sides.
3x+3y+2=3x+3y+2
Combine 3xy and -3xy to get 0.
3x+3y+2-3x=3y+2
Subtract 3x from both sides.
3y+2=3y+2
Combine 3x and -3x to get 0.
\text{true}
Reorder the terms.
x\in \mathrm{C}
This is true for any x.
3xy+3x+3y+2=\left(3x+3\right)\left(y+1\right)-1
Use the distributive property to multiply 3 by x+1.
3xy+3x+3y+2=3xy+3x+3y+3-1
Use the distributive property to multiply 3x+3 by y+1.
3xy+3x+3y+2=3xy+3x+3y+2
Subtract 1 from 3 to get 2.
3xy+3x+3y+2-3xy=3x+3y+2
Subtract 3xy from both sides.
3x+3y+2=3x+3y+2
Combine 3xy and -3xy to get 0.
3x+3y+2-3y=3x+2
Subtract 3y from both sides.
3x+2=3x+2
Combine 3y and -3y to get 0.
\text{true}
Reorder the terms.
y\in \mathrm{C}
This is true for any y.
3xy+3x+3y+2=\left(3x+3\right)\left(y+1\right)-1
Use the distributive property to multiply 3 by x+1.
3xy+3x+3y+2=3xy+3x+3y+3-1
Use the distributive property to multiply 3x+3 by y+1.
3xy+3x+3y+2=3xy+3x+3y+2
Subtract 1 from 3 to get 2.
3xy+3x+3y+2-3xy=3x+3y+2
Subtract 3xy from both sides.
3x+3y+2=3x+3y+2
Combine 3xy and -3xy to get 0.
3x+3y+2-3x=3y+2
Subtract 3x from both sides.
3y+2=3y+2
Combine 3x and -3x to get 0.
\text{true}
Reorder the terms.
x\in \mathrm{R}
This is true for any x.
3xy+3x+3y+2=\left(3x+3\right)\left(y+1\right)-1
Use the distributive property to multiply 3 by x+1.
3xy+3x+3y+2=3xy+3x+3y+3-1
Use the distributive property to multiply 3x+3 by y+1.
3xy+3x+3y+2=3xy+3x+3y+2
Subtract 1 from 3 to get 2.
3xy+3x+3y+2-3xy=3x+3y+2
Subtract 3xy from both sides.
3x+3y+2=3x+3y+2
Combine 3xy and -3xy to get 0.
3x+3y+2-3y=3x+2
Subtract 3y from both sides.
3x+2=3x+2
Combine 3y and -3y to get 0.
\text{true}
Reorder the terms.
y\in \mathrm{R}
This is true for any y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}