Solve for x
x=36
Graph
Share
Copied to clipboard
3x-8\sqrt{x}=60
Add 60 to both sides. Anything plus zero gives itself.
-8\sqrt{x}=60-3x
Subtract 3x from both sides of the equation.
\left(-8\sqrt{x}\right)^{2}=\left(60-3x\right)^{2}
Square both sides of the equation.
\left(-8\right)^{2}\left(\sqrt{x}\right)^{2}=\left(60-3x\right)^{2}
Expand \left(-8\sqrt{x}\right)^{2}.
64\left(\sqrt{x}\right)^{2}=\left(60-3x\right)^{2}
Calculate -8 to the power of 2 and get 64.
64x=\left(60-3x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
64x=3600-360x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(60-3x\right)^{2}.
64x+360x=3600+9x^{2}
Add 360x to both sides.
424x=3600+9x^{2}
Combine 64x and 360x to get 424x.
424x-9x^{2}=3600
Subtract 9x^{2} from both sides.
-9x^{2}+424x=3600
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-9x^{2}+424x-3600=3600-3600
Subtract 3600 from both sides of the equation.
-9x^{2}+424x-3600=0
Subtracting 3600 from itself leaves 0.
x=\frac{-424±\sqrt{424^{2}-4\left(-9\right)\left(-3600\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 424 for b, and -3600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-424±\sqrt{179776-4\left(-9\right)\left(-3600\right)}}{2\left(-9\right)}
Square 424.
x=\frac{-424±\sqrt{179776+36\left(-3600\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-424±\sqrt{179776-129600}}{2\left(-9\right)}
Multiply 36 times -3600.
x=\frac{-424±\sqrt{50176}}{2\left(-9\right)}
Add 179776 to -129600.
x=\frac{-424±224}{2\left(-9\right)}
Take the square root of 50176.
x=\frac{-424±224}{-18}
Multiply 2 times -9.
x=-\frac{200}{-18}
Now solve the equation x=\frac{-424±224}{-18} when ± is plus. Add -424 to 224.
x=\frac{100}{9}
Reduce the fraction \frac{-200}{-18} to lowest terms by extracting and canceling out 2.
x=-\frac{648}{-18}
Now solve the equation x=\frac{-424±224}{-18} when ± is minus. Subtract 224 from -424.
x=36
Divide -648 by -18.
x=\frac{100}{9} x=36
The equation is now solved.
3\times \frac{100}{9}-8\sqrt{\frac{100}{9}}-60=0
Substitute \frac{100}{9} for x in the equation 3x-8\sqrt{x}-60=0.
-\frac{160}{3}=0
Simplify. The value x=\frac{100}{9} does not satisfy the equation.
3\times 36-8\sqrt{36}-60=0
Substitute 36 for x in the equation 3x-8\sqrt{x}-60=0.
0=0
Simplify. The value x=36 satisfies the equation.
x=36
Equation -8\sqrt{x}=60-3x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}