Solve for x
x = \frac{51}{20} = 2\frac{11}{20} = 2.55
Graph
Share
Copied to clipboard
3x-8x+20=7\left(x-5\right)+4\left(2x+1\right)
Use the distributive property to multiply -4 by 2x-5.
-5x+20=7\left(x-5\right)+4\left(2x+1\right)
Combine 3x and -8x to get -5x.
-5x+20=7x-35+4\left(2x+1\right)
Use the distributive property to multiply 7 by x-5.
-5x+20=7x-35+8x+4
Use the distributive property to multiply 4 by 2x+1.
-5x+20=15x-35+4
Combine 7x and 8x to get 15x.
-5x+20=15x-31
Add -35 and 4 to get -31.
-5x+20-15x=-31
Subtract 15x from both sides.
-20x+20=-31
Combine -5x and -15x to get -20x.
-20x=-31-20
Subtract 20 from both sides.
-20x=-51
Subtract 20 from -31 to get -51.
x=\frac{-51}{-20}
Divide both sides by -20.
x=\frac{51}{20}
Fraction \frac{-51}{-20} can be simplified to \frac{51}{20} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}