Solve for x
x = -\frac{40}{9} = -4\frac{4}{9} \approx -4.444444444
Graph
Share
Copied to clipboard
3x-4+0x=15+12x+21
Multiply 0 and 2 to get 0.
3x-4+0=15+12x+21
Anything times zero gives zero.
3x-4=15+12x+21
Add -4 and 0 to get -4.
3x-4=36+12x
Add 15 and 21 to get 36.
3x-4-12x=36
Subtract 12x from both sides.
-9x-4=36
Combine 3x and -12x to get -9x.
-9x=36+4
Add 4 to both sides.
-9x=40
Add 36 and 4 to get 40.
x=\frac{40}{-9}
Divide both sides by -9.
x=-\frac{40}{9}
Fraction \frac{40}{-9} can be rewritten as -\frac{40}{9} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}