Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}+3x+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\left(-3\right)\times 4}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{9-4\left(-3\right)\times 4}}{2\left(-3\right)}
Square 3.
x=\frac{-3±\sqrt{9+12\times 4}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-3±\sqrt{9+48}}{2\left(-3\right)}
Multiply 12 times 4.
x=\frac{-3±\sqrt{57}}{2\left(-3\right)}
Add 9 to 48.
x=\frac{-3±\sqrt{57}}{-6}
Multiply 2 times -3.
x=\frac{\sqrt{57}-3}{-6}
Now solve the equation x=\frac{-3±\sqrt{57}}{-6} when ± is plus. Add -3 to \sqrt{57}.
x=-\frac{\sqrt{57}}{6}+\frac{1}{2}
Divide -3+\sqrt{57} by -6.
x=\frac{-\sqrt{57}-3}{-6}
Now solve the equation x=\frac{-3±\sqrt{57}}{-6} when ± is minus. Subtract \sqrt{57} from -3.
x=\frac{\sqrt{57}}{6}+\frac{1}{2}
Divide -3-\sqrt{57} by -6.
-3x^{2}+3x+4=-3\left(x-\left(-\frac{\sqrt{57}}{6}+\frac{1}{2}\right)\right)\left(x-\left(\frac{\sqrt{57}}{6}+\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{2}-\frac{\sqrt{57}}{6} for x_{1} and \frac{1}{2}+\frac{\sqrt{57}}{6} for x_{2}.