Solve for x
x=\frac{36288y+z}{6}
Solve for y
y=\frac{x}{6048}-\frac{z}{36288}
Share
Copied to clipboard
3x-\frac{1}{2}z=1296\times 14y
Calculate 36 to the power of 2 and get 1296.
3x-\frac{1}{2}z=18144y
Multiply 1296 and 14 to get 18144.
3x=18144y+\frac{1}{2}z
Add \frac{1}{2}z to both sides.
3x=\frac{z}{2}+18144y
The equation is in standard form.
\frac{3x}{3}=\frac{\frac{z}{2}+18144y}{3}
Divide both sides by 3.
x=\frac{\frac{z}{2}+18144y}{3}
Dividing by 3 undoes the multiplication by 3.
x=\frac{z}{6}+6048y
Divide 18144y+\frac{z}{2} by 3.
3x-\frac{1}{2}z=1296\times 14y
Calculate 36 to the power of 2 and get 1296.
3x-\frac{1}{2}z=18144y
Multiply 1296 and 14 to get 18144.
18144y=3x-\frac{1}{2}z
Swap sides so that all variable terms are on the left hand side.
18144y=-\frac{z}{2}+3x
The equation is in standard form.
\frac{18144y}{18144}=\frac{-\frac{z}{2}+3x}{18144}
Divide both sides by 18144.
y=\frac{-\frac{z}{2}+3x}{18144}
Dividing by 18144 undoes the multiplication by 18144.
y=\frac{x}{6048}-\frac{z}{36288}
Divide 3x-\frac{z}{2} by 18144.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}