Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x-\frac{1}{14}=5\times \frac{7}{10}x+5\left(-\frac{4}{5}\right)-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Use the distributive property to multiply 5 by \frac{7}{10}x-\frac{4}{5}.
3x-\frac{1}{14}=\frac{5\times 7}{10}x+5\left(-\frac{4}{5}\right)-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Express 5\times \frac{7}{10} as a single fraction.
3x-\frac{1}{14}=\frac{35}{10}x+5\left(-\frac{4}{5}\right)-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Multiply 5 and 7 to get 35.
3x-\frac{1}{14}=\frac{7}{2}x+5\left(-\frac{4}{5}\right)-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Reduce the fraction \frac{35}{10} to lowest terms by extracting and canceling out 5.
3x-\frac{1}{14}=\frac{7}{2}x-4-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Cancel out 5 and 5.
3x-\frac{1}{14}=\frac{37}{14}x-4-\frac{9}{2}-\frac{9}{7}
Combine \frac{7}{2}x and -\frac{6}{7}x to get \frac{37}{14}x.
3x-\frac{1}{14}=\frac{37}{14}x-\frac{8}{2}-\frac{9}{2}-\frac{9}{7}
Convert -4 to fraction -\frac{8}{2}.
3x-\frac{1}{14}=\frac{37}{14}x+\frac{-8-9}{2}-\frac{9}{7}
Since -\frac{8}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
3x-\frac{1}{14}=\frac{37}{14}x-\frac{17}{2}-\frac{9}{7}
Subtract 9 from -8 to get -17.
3x-\frac{1}{14}=\frac{37}{14}x-\frac{119}{14}-\frac{18}{14}
Least common multiple of 2 and 7 is 14. Convert -\frac{17}{2} and \frac{9}{7} to fractions with denominator 14.
3x-\frac{1}{14}=\frac{37}{14}x+\frac{-119-18}{14}
Since -\frac{119}{14} and \frac{18}{14} have the same denominator, subtract them by subtracting their numerators.
3x-\frac{1}{14}=\frac{37}{14}x-\frac{137}{14}
Subtract 18 from -119 to get -137.
3x-\frac{1}{14}-\frac{37}{14}x=-\frac{137}{14}
Subtract \frac{37}{14}x from both sides.
\frac{5}{14}x-\frac{1}{14}=-\frac{137}{14}
Combine 3x and -\frac{37}{14}x to get \frac{5}{14}x.
\frac{5}{14}x=-\frac{137}{14}+\frac{1}{14}
Add \frac{1}{14} to both sides.
\frac{5}{14}x=\frac{-137+1}{14}
Since -\frac{137}{14} and \frac{1}{14} have the same denominator, add them by adding their numerators.
\frac{5}{14}x=\frac{-136}{14}
Add -137 and 1 to get -136.
\frac{5}{14}x=-\frac{68}{7}
Reduce the fraction \frac{-136}{14} to lowest terms by extracting and canceling out 2.
x=-\frac{68}{7}\times \frac{14}{5}
Multiply both sides by \frac{14}{5}, the reciprocal of \frac{5}{14}.
x=\frac{-68\times 14}{7\times 5}
Multiply -\frac{68}{7} times \frac{14}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-952}{35}
Do the multiplications in the fraction \frac{-68\times 14}{7\times 5}.
x=-\frac{136}{5}
Reduce the fraction \frac{-952}{35} to lowest terms by extracting and canceling out 7.