Solve for x
x = -\frac{136}{5} = -27\frac{1}{5} = -27.2
Graph
Share
Copied to clipboard
3x-\frac{1}{14}=5\times \frac{7}{10}x+5\left(-\frac{4}{5}\right)-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Use the distributive property to multiply 5 by \frac{7}{10}x-\frac{4}{5}.
3x-\frac{1}{14}=\frac{5\times 7}{10}x+5\left(-\frac{4}{5}\right)-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Express 5\times \frac{7}{10} as a single fraction.
3x-\frac{1}{14}=\frac{35}{10}x+5\left(-\frac{4}{5}\right)-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Multiply 5 and 7 to get 35.
3x-\frac{1}{14}=\frac{7}{2}x+5\left(-\frac{4}{5}\right)-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Reduce the fraction \frac{35}{10} to lowest terms by extracting and canceling out 5.
3x-\frac{1}{14}=\frac{7}{2}x-4-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Cancel out 5 and 5.
3x-\frac{1}{14}=\frac{37}{14}x-4-\frac{9}{2}-\frac{9}{7}
Combine \frac{7}{2}x and -\frac{6}{7}x to get \frac{37}{14}x.
3x-\frac{1}{14}=\frac{37}{14}x-\frac{8}{2}-\frac{9}{2}-\frac{9}{7}
Convert -4 to fraction -\frac{8}{2}.
3x-\frac{1}{14}=\frac{37}{14}x+\frac{-8-9}{2}-\frac{9}{7}
Since -\frac{8}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
3x-\frac{1}{14}=\frac{37}{14}x-\frac{17}{2}-\frac{9}{7}
Subtract 9 from -8 to get -17.
3x-\frac{1}{14}=\frac{37}{14}x-\frac{119}{14}-\frac{18}{14}
Least common multiple of 2 and 7 is 14. Convert -\frac{17}{2} and \frac{9}{7} to fractions with denominator 14.
3x-\frac{1}{14}=\frac{37}{14}x+\frac{-119-18}{14}
Since -\frac{119}{14} and \frac{18}{14} have the same denominator, subtract them by subtracting their numerators.
3x-\frac{1}{14}=\frac{37}{14}x-\frac{137}{14}
Subtract 18 from -119 to get -137.
3x-\frac{1}{14}-\frac{37}{14}x=-\frac{137}{14}
Subtract \frac{37}{14}x from both sides.
\frac{5}{14}x-\frac{1}{14}=-\frac{137}{14}
Combine 3x and -\frac{37}{14}x to get \frac{5}{14}x.
\frac{5}{14}x=-\frac{137}{14}+\frac{1}{14}
Add \frac{1}{14} to both sides.
\frac{5}{14}x=\frac{-137+1}{14}
Since -\frac{137}{14} and \frac{1}{14} have the same denominator, add them by adding their numerators.
\frac{5}{14}x=\frac{-136}{14}
Add -137 and 1 to get -136.
\frac{5}{14}x=-\frac{68}{7}
Reduce the fraction \frac{-136}{14} to lowest terms by extracting and canceling out 2.
x=-\frac{68}{7}\times \frac{14}{5}
Multiply both sides by \frac{14}{5}, the reciprocal of \frac{5}{14}.
x=\frac{-68\times 14}{7\times 5}
Multiply -\frac{68}{7} times \frac{14}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-952}{35}
Do the multiplications in the fraction \frac{-68\times 14}{7\times 5}.
x=-\frac{136}{5}
Reduce the fraction \frac{-952}{35} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}