Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x-\frac{1}{14}=5\times \frac{7}{10}x+5\left(-\frac{1}{5}\right)-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Use the distributive property to multiply 5 by \frac{7}{10}x-\frac{1}{5}.
3x-\frac{1}{14}=\frac{5\times 7}{10}x+5\left(-\frac{1}{5}\right)-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Express 5\times \frac{7}{10} as a single fraction.
3x-\frac{1}{14}=\frac{35}{10}x+5\left(-\frac{1}{5}\right)-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Multiply 5 and 7 to get 35.
3x-\frac{1}{14}=\frac{7}{2}x+5\left(-\frac{1}{5}\right)-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Reduce the fraction \frac{35}{10} to lowest terms by extracting and canceling out 5.
3x-\frac{1}{14}=\frac{7}{2}x-1-\frac{6}{7}x-\frac{9}{2}-\frac{9}{7}
Cancel out 5 and 5.
3x-\frac{1}{14}=\frac{37}{14}x-1-\frac{9}{2}-\frac{9}{7}
Combine \frac{7}{2}x and -\frac{6}{7}x to get \frac{37}{14}x.
3x-\frac{1}{14}=\frac{37}{14}x-\frac{2}{2}-\frac{9}{2}-\frac{9}{7}
Convert -1 to fraction -\frac{2}{2}.
3x-\frac{1}{14}=\frac{37}{14}x+\frac{-2-9}{2}-\frac{9}{7}
Since -\frac{2}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
3x-\frac{1}{14}=\frac{37}{14}x-\frac{11}{2}-\frac{9}{7}
Subtract 9 from -2 to get -11.
3x-\frac{1}{14}=\frac{37}{14}x-\frac{77}{14}-\frac{18}{14}
Least common multiple of 2 and 7 is 14. Convert -\frac{11}{2} and \frac{9}{7} to fractions with denominator 14.
3x-\frac{1}{14}=\frac{37}{14}x+\frac{-77-18}{14}
Since -\frac{77}{14} and \frac{18}{14} have the same denominator, subtract them by subtracting their numerators.
3x-\frac{1}{14}=\frac{37}{14}x-\frac{95}{14}
Subtract 18 from -77 to get -95.
3x-\frac{1}{14}-\frac{37}{14}x=-\frac{95}{14}
Subtract \frac{37}{14}x from both sides.
\frac{5}{14}x-\frac{1}{14}=-\frac{95}{14}
Combine 3x and -\frac{37}{14}x to get \frac{5}{14}x.
\frac{5}{14}x=-\frac{95}{14}+\frac{1}{14}
Add \frac{1}{14} to both sides.
\frac{5}{14}x=\frac{-95+1}{14}
Since -\frac{95}{14} and \frac{1}{14} have the same denominator, add them by adding their numerators.
\frac{5}{14}x=\frac{-94}{14}
Add -95 and 1 to get -94.
\frac{5}{14}x=-\frac{47}{7}
Reduce the fraction \frac{-94}{14} to lowest terms by extracting and canceling out 2.
x=-\frac{47}{7}\times \frac{14}{5}
Multiply both sides by \frac{14}{5}, the reciprocal of \frac{5}{14}.
x=\frac{-47\times 14}{7\times 5}
Multiply -\frac{47}{7} times \frac{14}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-658}{35}
Do the multiplications in the fraction \frac{-47\times 14}{7\times 5}.
x=-\frac{94}{5}
Reduce the fraction \frac{-658}{35} to lowest terms by extracting and canceling out 7.