Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-15x+16=-x
Use the distributive property to multiply 3x by x-5.
3x^{2}-15x+16+x=0
Add x to both sides.
3x^{2}-14x+16=0
Combine -15x and x to get -14x.
a+b=-14 ab=3\times 16=48
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+16. To find a and b, set up a system to be solved.
-1,-48 -2,-24 -3,-16 -4,-12 -6,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 48.
-1-48=-49 -2-24=-26 -3-16=-19 -4-12=-16 -6-8=-14
Calculate the sum for each pair.
a=-8 b=-6
The solution is the pair that gives sum -14.
\left(3x^{2}-8x\right)+\left(-6x+16\right)
Rewrite 3x^{2}-14x+16 as \left(3x^{2}-8x\right)+\left(-6x+16\right).
x\left(3x-8\right)-2\left(3x-8\right)
Factor out x in the first and -2 in the second group.
\left(3x-8\right)\left(x-2\right)
Factor out common term 3x-8 by using distributive property.
x=\frac{8}{3} x=2
To find equation solutions, solve 3x-8=0 and x-2=0.
3x^{2}-15x+16=-x
Use the distributive property to multiply 3x by x-5.
3x^{2}-15x+16+x=0
Add x to both sides.
3x^{2}-14x+16=0
Combine -15x and x to get -14x.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 3\times 16}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -14 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 3\times 16}}{2\times 3}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-12\times 16}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-14\right)±\sqrt{196-192}}{2\times 3}
Multiply -12 times 16.
x=\frac{-\left(-14\right)±\sqrt{4}}{2\times 3}
Add 196 to -192.
x=\frac{-\left(-14\right)±2}{2\times 3}
Take the square root of 4.
x=\frac{14±2}{2\times 3}
The opposite of -14 is 14.
x=\frac{14±2}{6}
Multiply 2 times 3.
x=\frac{16}{6}
Now solve the equation x=\frac{14±2}{6} when ± is plus. Add 14 to 2.
x=\frac{8}{3}
Reduce the fraction \frac{16}{6} to lowest terms by extracting and canceling out 2.
x=\frac{12}{6}
Now solve the equation x=\frac{14±2}{6} when ± is minus. Subtract 2 from 14.
x=2
Divide 12 by 6.
x=\frac{8}{3} x=2
The equation is now solved.
3x^{2}-15x+16=-x
Use the distributive property to multiply 3x by x-5.
3x^{2}-15x+16+x=0
Add x to both sides.
3x^{2}-14x+16=0
Combine -15x and x to get -14x.
3x^{2}-14x=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}-14x}{3}=-\frac{16}{3}
Divide both sides by 3.
x^{2}-\frac{14}{3}x=-\frac{16}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{14}{3}x+\left(-\frac{7}{3}\right)^{2}=-\frac{16}{3}+\left(-\frac{7}{3}\right)^{2}
Divide -\frac{14}{3}, the coefficient of the x term, by 2 to get -\frac{7}{3}. Then add the square of -\frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{14}{3}x+\frac{49}{9}=-\frac{16}{3}+\frac{49}{9}
Square -\frac{7}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{14}{3}x+\frac{49}{9}=\frac{1}{9}
Add -\frac{16}{3} to \frac{49}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{3}\right)^{2}=\frac{1}{9}
Factor x^{2}-\frac{14}{3}x+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
x-\frac{7}{3}=\frac{1}{3} x-\frac{7}{3}=-\frac{1}{3}
Simplify.
x=\frac{8}{3} x=2
Add \frac{7}{3} to both sides of the equation.