Solve for x
x=-5
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
3x^{2}+15x=5\left(x+5\right)
Use the distributive property to multiply 3x by x+5.
3x^{2}+15x=5x+25
Use the distributive property to multiply 5 by x+5.
3x^{2}+15x-5x=25
Subtract 5x from both sides.
3x^{2}+10x=25
Combine 15x and -5x to get 10x.
3x^{2}+10x-25=0
Subtract 25 from both sides.
x=\frac{-10±\sqrt{10^{2}-4\times 3\left(-25\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 10 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 3\left(-25\right)}}{2\times 3}
Square 10.
x=\frac{-10±\sqrt{100-12\left(-25\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-10±\sqrt{100+300}}{2\times 3}
Multiply -12 times -25.
x=\frac{-10±\sqrt{400}}{2\times 3}
Add 100 to 300.
x=\frac{-10±20}{2\times 3}
Take the square root of 400.
x=\frac{-10±20}{6}
Multiply 2 times 3.
x=\frac{10}{6}
Now solve the equation x=\frac{-10±20}{6} when ± is plus. Add -10 to 20.
x=\frac{5}{3}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{30}{6}
Now solve the equation x=\frac{-10±20}{6} when ± is minus. Subtract 20 from -10.
x=-5
Divide -30 by 6.
x=\frac{5}{3} x=-5
The equation is now solved.
3x^{2}+15x=5\left(x+5\right)
Use the distributive property to multiply 3x by x+5.
3x^{2}+15x=5x+25
Use the distributive property to multiply 5 by x+5.
3x^{2}+15x-5x=25
Subtract 5x from both sides.
3x^{2}+10x=25
Combine 15x and -5x to get 10x.
\frac{3x^{2}+10x}{3}=\frac{25}{3}
Divide both sides by 3.
x^{2}+\frac{10}{3}x=\frac{25}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=\frac{25}{3}+\left(\frac{5}{3}\right)^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{25}{3}+\frac{25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{100}{9}
Add \frac{25}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{3}\right)^{2}=\frac{100}{9}
Factor x^{2}+\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{100}{9}}
Take the square root of both sides of the equation.
x+\frac{5}{3}=\frac{10}{3} x+\frac{5}{3}=-\frac{10}{3}
Simplify.
x=\frac{5}{3} x=-5
Subtract \frac{5}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}