Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

15x^{2}-3x=4x\left(2x+5\right)
Use the distributive property to multiply 3x by 5x-1.
15x^{2}-3x=8x^{2}+20x
Use the distributive property to multiply 4x by 2x+5.
15x^{2}-3x-8x^{2}=20x
Subtract 8x^{2} from both sides.
7x^{2}-3x=20x
Combine 15x^{2} and -8x^{2} to get 7x^{2}.
7x^{2}-3x-20x=0
Subtract 20x from both sides.
7x^{2}-23x=0
Combine -3x and -20x to get -23x.
x\left(7x-23\right)=0
Factor out x.
x=0 x=\frac{23}{7}
To find equation solutions, solve x=0 and 7x-23=0.
15x^{2}-3x=4x\left(2x+5\right)
Use the distributive property to multiply 3x by 5x-1.
15x^{2}-3x=8x^{2}+20x
Use the distributive property to multiply 4x by 2x+5.
15x^{2}-3x-8x^{2}=20x
Subtract 8x^{2} from both sides.
7x^{2}-3x=20x
Combine 15x^{2} and -8x^{2} to get 7x^{2}.
7x^{2}-3x-20x=0
Subtract 20x from both sides.
7x^{2}-23x=0
Combine -3x and -20x to get -23x.
x=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -23 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-23\right)±23}{2\times 7}
Take the square root of \left(-23\right)^{2}.
x=\frac{23±23}{2\times 7}
The opposite of -23 is 23.
x=\frac{23±23}{14}
Multiply 2 times 7.
x=\frac{46}{14}
Now solve the equation x=\frac{23±23}{14} when ± is plus. Add 23 to 23.
x=\frac{23}{7}
Reduce the fraction \frac{46}{14} to lowest terms by extracting and canceling out 2.
x=\frac{0}{14}
Now solve the equation x=\frac{23±23}{14} when ± is minus. Subtract 23 from 23.
x=0
Divide 0 by 14.
x=\frac{23}{7} x=0
The equation is now solved.
15x^{2}-3x=4x\left(2x+5\right)
Use the distributive property to multiply 3x by 5x-1.
15x^{2}-3x=8x^{2}+20x
Use the distributive property to multiply 4x by 2x+5.
15x^{2}-3x-8x^{2}=20x
Subtract 8x^{2} from both sides.
7x^{2}-3x=20x
Combine 15x^{2} and -8x^{2} to get 7x^{2}.
7x^{2}-3x-20x=0
Subtract 20x from both sides.
7x^{2}-23x=0
Combine -3x and -20x to get -23x.
\frac{7x^{2}-23x}{7}=\frac{0}{7}
Divide both sides by 7.
x^{2}-\frac{23}{7}x=\frac{0}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{23}{7}x=0
Divide 0 by 7.
x^{2}-\frac{23}{7}x+\left(-\frac{23}{14}\right)^{2}=\left(-\frac{23}{14}\right)^{2}
Divide -\frac{23}{7}, the coefficient of the x term, by 2 to get -\frac{23}{14}. Then add the square of -\frac{23}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{23}{7}x+\frac{529}{196}=\frac{529}{196}
Square -\frac{23}{14} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{23}{14}\right)^{2}=\frac{529}{196}
Factor x^{2}-\frac{23}{7}x+\frac{529}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{23}{14}\right)^{2}}=\sqrt{\frac{529}{196}}
Take the square root of both sides of the equation.
x-\frac{23}{14}=\frac{23}{14} x-\frac{23}{14}=-\frac{23}{14}
Simplify.
x=\frac{23}{7} x=0
Add \frac{23}{14} to both sides of the equation.