Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

33x-6x^{2}=15
Use the distributive property to multiply 3x by 11-2x.
33x-6x^{2}-15=0
Subtract 15 from both sides.
-6x^{2}+33x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-33±\sqrt{33^{2}-4\left(-6\right)\left(-15\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 33 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-33±\sqrt{1089-4\left(-6\right)\left(-15\right)}}{2\left(-6\right)}
Square 33.
x=\frac{-33±\sqrt{1089+24\left(-15\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-33±\sqrt{1089-360}}{2\left(-6\right)}
Multiply 24 times -15.
x=\frac{-33±\sqrt{729}}{2\left(-6\right)}
Add 1089 to -360.
x=\frac{-33±27}{2\left(-6\right)}
Take the square root of 729.
x=\frac{-33±27}{-12}
Multiply 2 times -6.
x=-\frac{6}{-12}
Now solve the equation x=\frac{-33±27}{-12} when ± is plus. Add -33 to 27.
x=\frac{1}{2}
Reduce the fraction \frac{-6}{-12} to lowest terms by extracting and canceling out 6.
x=-\frac{60}{-12}
Now solve the equation x=\frac{-33±27}{-12} when ± is minus. Subtract 27 from -33.
x=5
Divide -60 by -12.
x=\frac{1}{2} x=5
The equation is now solved.
33x-6x^{2}=15
Use the distributive property to multiply 3x by 11-2x.
-6x^{2}+33x=15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6x^{2}+33x}{-6}=\frac{15}{-6}
Divide both sides by -6.
x^{2}+\frac{33}{-6}x=\frac{15}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-\frac{11}{2}x=\frac{15}{-6}
Reduce the fraction \frac{33}{-6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{11}{2}x=-\frac{5}{2}
Reduce the fraction \frac{15}{-6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=-\frac{5}{2}+\left(-\frac{11}{4}\right)^{2}
Divide -\frac{11}{2}, the coefficient of the x term, by 2 to get -\frac{11}{4}. Then add the square of -\frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-\frac{5}{2}+\frac{121}{16}
Square -\frac{11}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{81}{16}
Add -\frac{5}{2} to \frac{121}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{4}\right)^{2}=\frac{81}{16}
Factor x^{2}-\frac{11}{2}x+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Take the square root of both sides of the equation.
x-\frac{11}{4}=\frac{9}{4} x-\frac{11}{4}=-\frac{9}{4}
Simplify.
x=5 x=\frac{1}{2}
Add \frac{11}{4} to both sides of the equation.