Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x=136+xx
Multiply both sides of the equation by 2.
6x=136+x^{2}
Multiply x and x to get x^{2}.
6x-136=x^{2}
Subtract 136 from both sides.
6x-136-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+6x-136=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\left(-136\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 6 for b, and -136 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-1\right)\left(-136\right)}}{2\left(-1\right)}
Square 6.
x=\frac{-6±\sqrt{36+4\left(-136\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-6±\sqrt{36-544}}{2\left(-1\right)}
Multiply 4 times -136.
x=\frac{-6±\sqrt{-508}}{2\left(-1\right)}
Add 36 to -544.
x=\frac{-6±2\sqrt{127}i}{2\left(-1\right)}
Take the square root of -508.
x=\frac{-6±2\sqrt{127}i}{-2}
Multiply 2 times -1.
x=\frac{-6+2\sqrt{127}i}{-2}
Now solve the equation x=\frac{-6±2\sqrt{127}i}{-2} when ± is plus. Add -6 to 2i\sqrt{127}.
x=-\sqrt{127}i+3
Divide -6+2i\sqrt{127} by -2.
x=\frac{-2\sqrt{127}i-6}{-2}
Now solve the equation x=\frac{-6±2\sqrt{127}i}{-2} when ± is minus. Subtract 2i\sqrt{127} from -6.
x=3+\sqrt{127}i
Divide -6-2i\sqrt{127} by -2.
x=-\sqrt{127}i+3 x=3+\sqrt{127}i
The equation is now solved.
6x=136+xx
Multiply both sides of the equation by 2.
6x=136+x^{2}
Multiply x and x to get x^{2}.
6x-x^{2}=136
Subtract x^{2} from both sides.
-x^{2}+6x=136
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+6x}{-1}=\frac{136}{-1}
Divide both sides by -1.
x^{2}+\frac{6}{-1}x=\frac{136}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-6x=\frac{136}{-1}
Divide 6 by -1.
x^{2}-6x=-136
Divide 136 by -1.
x^{2}-6x+\left(-3\right)^{2}=-136+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-136+9
Square -3.
x^{2}-6x+9=-127
Add -136 to 9.
\left(x-3\right)^{2}=-127
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-127}
Take the square root of both sides of the equation.
x-3=\sqrt{127}i x-3=-\sqrt{127}i
Simplify.
x=3+\sqrt{127}i x=-\sqrt{127}i+3
Add 3 to both sides of the equation.