Solve for x
x=\frac{4}{3\left(y+7\right)}
y\neq -7
Solve for y
y=-7+\frac{4}{3x}
x\neq 0
Graph
Share
Copied to clipboard
3x\left(y+7\right)=4
Multiply both sides of the equation by y+7.
3xy+21x=4
Use the distributive property to multiply 3x by y+7.
\left(3y+21\right)x=4
Combine all terms containing x.
\frac{\left(3y+21\right)x}{3y+21}=\frac{4}{3y+21}
Divide both sides by 3y+21.
x=\frac{4}{3y+21}
Dividing by 3y+21 undoes the multiplication by 3y+21.
x=\frac{4}{3\left(y+7\right)}
Divide 4 by 3y+21.
3x\left(y+7\right)=4
Variable y cannot be equal to -7 since division by zero is not defined. Multiply both sides of the equation by y+7.
3xy+21x=4
Use the distributive property to multiply 3x by y+7.
3xy=4-21x
Subtract 21x from both sides.
\frac{3xy}{3x}=\frac{4-21x}{3x}
Divide both sides by 3x.
y=\frac{4-21x}{3x}
Dividing by 3x undoes the multiplication by 3x.
y=-7+\frac{4}{3x}
Divide 4-21x by 3x.
y=-7+\frac{4}{3x}\text{, }y\neq -7
Variable y cannot be equal to -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}