Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x+9+\frac{4x+5}{3\left(x-2\right)}
Factor 3x-6.
\frac{\left(3x+9\right)\times 3\left(x-2\right)}{3\left(x-2\right)}+\frac{4x+5}{3\left(x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x+9 times \frac{3\left(x-2\right)}{3\left(x-2\right)}.
\frac{\left(3x+9\right)\times 3\left(x-2\right)+4x+5}{3\left(x-2\right)}
Since \frac{\left(3x+9\right)\times 3\left(x-2\right)}{3\left(x-2\right)} and \frac{4x+5}{3\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{9x^{2}-18x+27x-54+4x+5}{3\left(x-2\right)}
Do the multiplications in \left(3x+9\right)\times 3\left(x-2\right)+4x+5.
\frac{9x^{2}+13x-49}{3\left(x-2\right)}
Combine like terms in 9x^{2}-18x+27x-54+4x+5.
\frac{9\left(x-\left(-\frac{1}{18}\sqrt{1933}-\frac{13}{18}\right)\right)\left(x-\left(\frac{1}{18}\sqrt{1933}-\frac{13}{18}\right)\right)}{3\left(x-2\right)}
Factor the expressions that are not already factored in \frac{9x^{2}+13x-49}{3\left(x-2\right)}.
\frac{3\left(x-\left(-\frac{1}{18}\sqrt{1933}-\frac{13}{18}\right)\right)\left(x-\left(\frac{1}{18}\sqrt{1933}-\frac{13}{18}\right)\right)}{x-2}
Cancel out 3 in both numerator and denominator.
\frac{3\left(x-\left(-\frac{1}{18}\sqrt{1933}\right)-\left(-\frac{13}{18}\right)\right)\left(x-\left(\frac{1}{18}\sqrt{1933}-\frac{13}{18}\right)\right)}{x-2}
To find the opposite of -\frac{1}{18}\sqrt{1933}-\frac{13}{18}, find the opposite of each term.
\frac{3\left(x+\frac{1}{18}\sqrt{1933}-\left(-\frac{13}{18}\right)\right)\left(x-\left(\frac{1}{18}\sqrt{1933}-\frac{13}{18}\right)\right)}{x-2}
The opposite of -\frac{1}{18}\sqrt{1933} is \frac{1}{18}\sqrt{1933}.
\frac{3\left(x+\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)\left(x-\left(\frac{1}{18}\sqrt{1933}-\frac{13}{18}\right)\right)}{x-2}
The opposite of -\frac{13}{18} is \frac{13}{18}.
\frac{3\left(x+\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)\left(x-\frac{1}{18}\sqrt{1933}-\left(-\frac{13}{18}\right)\right)}{x-2}
To find the opposite of \frac{1}{18}\sqrt{1933}-\frac{13}{18}, find the opposite of each term.
\frac{3\left(x+\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)\left(x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)}{x-2}
The opposite of -\frac{13}{18} is \frac{13}{18}.
\frac{\left(3x+3\times \frac{1}{18}\sqrt{1933}+3\times \frac{13}{18}\right)\left(x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)}{x-2}
Use the distributive property to multiply 3 by x+\frac{1}{18}\sqrt{1933}+\frac{13}{18}.
\frac{\left(3x+\frac{3}{18}\sqrt{1933}+3\times \frac{13}{18}\right)\left(x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)}{x-2}
Multiply 3 and \frac{1}{18} to get \frac{3}{18}.
\frac{\left(3x+\frac{1}{6}\sqrt{1933}+3\times \frac{13}{18}\right)\left(x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)}{x-2}
Reduce the fraction \frac{3}{18} to lowest terms by extracting and canceling out 3.
\frac{\left(3x+\frac{1}{6}\sqrt{1933}+\frac{3\times 13}{18}\right)\left(x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)}{x-2}
Express 3\times \frac{13}{18} as a single fraction.
\frac{\left(3x+\frac{1}{6}\sqrt{1933}+\frac{39}{18}\right)\left(x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)}{x-2}
Multiply 3 and 13 to get 39.
\frac{\left(3x+\frac{1}{6}\sqrt{1933}+\frac{13}{6}\right)\left(x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)}{x-2}
Reduce the fraction \frac{39}{18} to lowest terms by extracting and canceling out 3.
\frac{3x^{2}+3x\left(-\frac{1}{18}\right)\sqrt{1933}+3x\times \frac{13}{18}+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\sqrt{1933}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Apply the distributive property by multiplying each term of 3x+\frac{1}{6}\sqrt{1933}+\frac{13}{6} by each term of x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}.
\frac{3x^{2}+3x\left(-\frac{1}{18}\right)\sqrt{1933}+3x\times \frac{13}{18}+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Multiply \sqrt{1933} and \sqrt{1933} to get 1933.
\frac{3x^{2}+\frac{3\left(-1\right)}{18}x\sqrt{1933}+3x\times \frac{13}{18}+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Express 3\left(-\frac{1}{18}\right) as a single fraction.
\frac{3x^{2}+\frac{-3}{18}x\sqrt{1933}+3x\times \frac{13}{18}+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Multiply 3 and -1 to get -3.
\frac{3x^{2}-\frac{1}{6}x\sqrt{1933}+3x\times \frac{13}{18}+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Reduce the fraction \frac{-3}{18} to lowest terms by extracting and canceling out 3.
\frac{3x^{2}-\frac{1}{6}x\sqrt{1933}+\frac{3\times 13}{18}x+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Express 3\times \frac{13}{18} as a single fraction.
\frac{3x^{2}-\frac{1}{6}x\sqrt{1933}+\frac{39}{18}x+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Multiply 3 and 13 to get 39.
\frac{3x^{2}-\frac{1}{6}x\sqrt{1933}+\frac{13}{6}x+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Reduce the fraction \frac{39}{18} to lowest terms by extracting and canceling out 3.
\frac{3x^{2}+\frac{13}{6}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Combine -\frac{1}{6}x\sqrt{1933} and \frac{1}{6}\sqrt{1933}x to get 0.
\frac{3x^{2}+\frac{13}{6}x+\frac{1933}{6}\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Multiply \frac{1}{6} and 1933 to get \frac{1933}{6}.
\frac{3x^{2}+\frac{13}{6}x+\frac{1933\left(-1\right)}{6\times 18}+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Multiply \frac{1933}{6} times -\frac{1}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{3x^{2}+\frac{13}{6}x+\frac{-1933}{108}+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Do the multiplications in the fraction \frac{1933\left(-1\right)}{6\times 18}.
\frac{3x^{2}+\frac{13}{6}x-\frac{1933}{108}+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Fraction \frac{-1933}{108} can be rewritten as -\frac{1933}{108} by extracting the negative sign.
\frac{3x^{2}+\frac{13}{6}x-\frac{1933}{108}+\frac{1\times 13}{6\times 18}\sqrt{1933}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Multiply \frac{1}{6} times \frac{13}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{3x^{2}+\frac{13}{6}x-\frac{1933}{108}+\frac{13}{108}\sqrt{1933}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Do the multiplications in the fraction \frac{1\times 13}{6\times 18}.
\frac{3x^{2}+\frac{13}{3}x-\frac{1933}{108}+\frac{13}{108}\sqrt{1933}+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Combine \frac{13}{6}x and \frac{13}{6}x to get \frac{13}{3}x.
\frac{3x^{2}+\frac{13}{3}x-\frac{1933}{108}+\frac{13}{108}\sqrt{1933}+\frac{13\left(-1\right)}{6\times 18}\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Multiply \frac{13}{6} times -\frac{1}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{3x^{2}+\frac{13}{3}x-\frac{1933}{108}+\frac{13}{108}\sqrt{1933}+\frac{-13}{108}\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Do the multiplications in the fraction \frac{13\left(-1\right)}{6\times 18}.
\frac{3x^{2}+\frac{13}{3}x-\frac{1933}{108}+\frac{13}{108}\sqrt{1933}-\frac{13}{108}\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Fraction \frac{-13}{108} can be rewritten as -\frac{13}{108} by extracting the negative sign.
\frac{3x^{2}+\frac{13}{3}x-\frac{1933}{108}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Combine \frac{13}{108}\sqrt{1933} and -\frac{13}{108}\sqrt{1933} to get 0.
\frac{3x^{2}+\frac{13}{3}x-\frac{1933}{108}+\frac{13\times 13}{6\times 18}}{x-2}
Multiply \frac{13}{6} times \frac{13}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{3x^{2}+\frac{13}{3}x-\frac{1933}{108}+\frac{169}{108}}{x-2}
Do the multiplications in the fraction \frac{13\times 13}{6\times 18}.
\frac{3x^{2}+\frac{13}{3}x+\frac{-1933+169}{108}}{x-2}
Since -\frac{1933}{108} and \frac{169}{108} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+\frac{13}{3}x+\frac{-1764}{108}}{x-2}
Add -1933 and 169 to get -1764.
\frac{3x^{2}+\frac{13}{3}x-\frac{49}{3}}{x-2}
Reduce the fraction \frac{-1764}{108} to lowest terms by extracting and canceling out 36.
3x+9+\frac{4x+5}{3\left(x-2\right)}
Factor 3x-6.
\frac{\left(3x+9\right)\times 3\left(x-2\right)}{3\left(x-2\right)}+\frac{4x+5}{3\left(x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x+9 times \frac{3\left(x-2\right)}{3\left(x-2\right)}.
\frac{\left(3x+9\right)\times 3\left(x-2\right)+4x+5}{3\left(x-2\right)}
Since \frac{\left(3x+9\right)\times 3\left(x-2\right)}{3\left(x-2\right)} and \frac{4x+5}{3\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{9x^{2}-18x+27x-54+4x+5}{3\left(x-2\right)}
Do the multiplications in \left(3x+9\right)\times 3\left(x-2\right)+4x+5.
\frac{9x^{2}+13x-49}{3\left(x-2\right)}
Combine like terms in 9x^{2}-18x+27x-54+4x+5.
\frac{9\left(x-\left(-\frac{1}{18}\sqrt{1933}-\frac{13}{18}\right)\right)\left(x-\left(\frac{1}{18}\sqrt{1933}-\frac{13}{18}\right)\right)}{3\left(x-2\right)}
Factor the expressions that are not already factored in \frac{9x^{2}+13x-49}{3\left(x-2\right)}.
\frac{3\left(x-\left(-\frac{1}{18}\sqrt{1933}-\frac{13}{18}\right)\right)\left(x-\left(\frac{1}{18}\sqrt{1933}-\frac{13}{18}\right)\right)}{x-2}
Cancel out 3 in both numerator and denominator.
\frac{3\left(x-\left(-\frac{1}{18}\sqrt{1933}\right)-\left(-\frac{13}{18}\right)\right)\left(x-\left(\frac{1}{18}\sqrt{1933}-\frac{13}{18}\right)\right)}{x-2}
To find the opposite of -\frac{1}{18}\sqrt{1933}-\frac{13}{18}, find the opposite of each term.
\frac{3\left(x+\frac{1}{18}\sqrt{1933}-\left(-\frac{13}{18}\right)\right)\left(x-\left(\frac{1}{18}\sqrt{1933}-\frac{13}{18}\right)\right)}{x-2}
The opposite of -\frac{1}{18}\sqrt{1933} is \frac{1}{18}\sqrt{1933}.
\frac{3\left(x+\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)\left(x-\left(\frac{1}{18}\sqrt{1933}-\frac{13}{18}\right)\right)}{x-2}
The opposite of -\frac{13}{18} is \frac{13}{18}.
\frac{3\left(x+\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)\left(x-\frac{1}{18}\sqrt{1933}-\left(-\frac{13}{18}\right)\right)}{x-2}
To find the opposite of \frac{1}{18}\sqrt{1933}-\frac{13}{18}, find the opposite of each term.
\frac{3\left(x+\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)\left(x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)}{x-2}
The opposite of -\frac{13}{18} is \frac{13}{18}.
\frac{\left(3x+3\times \frac{1}{18}\sqrt{1933}+3\times \frac{13}{18}\right)\left(x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)}{x-2}
Use the distributive property to multiply 3 by x+\frac{1}{18}\sqrt{1933}+\frac{13}{18}.
\frac{\left(3x+\frac{3}{18}\sqrt{1933}+3\times \frac{13}{18}\right)\left(x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)}{x-2}
Multiply 3 and \frac{1}{18} to get \frac{3}{18}.
\frac{\left(3x+\frac{1}{6}\sqrt{1933}+3\times \frac{13}{18}\right)\left(x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)}{x-2}
Reduce the fraction \frac{3}{18} to lowest terms by extracting and canceling out 3.
\frac{\left(3x+\frac{1}{6}\sqrt{1933}+\frac{3\times 13}{18}\right)\left(x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)}{x-2}
Express 3\times \frac{13}{18} as a single fraction.
\frac{\left(3x+\frac{1}{6}\sqrt{1933}+\frac{39}{18}\right)\left(x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)}{x-2}
Multiply 3 and 13 to get 39.
\frac{\left(3x+\frac{1}{6}\sqrt{1933}+\frac{13}{6}\right)\left(x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}\right)}{x-2}
Reduce the fraction \frac{39}{18} to lowest terms by extracting and canceling out 3.
\frac{3x^{2}+3x\left(-\frac{1}{18}\right)\sqrt{1933}+3x\times \frac{13}{18}+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\sqrt{1933}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Apply the distributive property by multiplying each term of 3x+\frac{1}{6}\sqrt{1933}+\frac{13}{6} by each term of x-\frac{1}{18}\sqrt{1933}+\frac{13}{18}.
\frac{3x^{2}+3x\left(-\frac{1}{18}\right)\sqrt{1933}+3x\times \frac{13}{18}+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Multiply \sqrt{1933} and \sqrt{1933} to get 1933.
\frac{3x^{2}+\frac{3\left(-1\right)}{18}x\sqrt{1933}+3x\times \frac{13}{18}+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Express 3\left(-\frac{1}{18}\right) as a single fraction.
\frac{3x^{2}+\frac{-3}{18}x\sqrt{1933}+3x\times \frac{13}{18}+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Multiply 3 and -1 to get -3.
\frac{3x^{2}-\frac{1}{6}x\sqrt{1933}+3x\times \frac{13}{18}+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Reduce the fraction \frac{-3}{18} to lowest terms by extracting and canceling out 3.
\frac{3x^{2}-\frac{1}{6}x\sqrt{1933}+\frac{3\times 13}{18}x+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Express 3\times \frac{13}{18} as a single fraction.
\frac{3x^{2}-\frac{1}{6}x\sqrt{1933}+\frac{39}{18}x+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Multiply 3 and 13 to get 39.
\frac{3x^{2}-\frac{1}{6}x\sqrt{1933}+\frac{13}{6}x+\frac{1}{6}\sqrt{1933}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Reduce the fraction \frac{39}{18} to lowest terms by extracting and canceling out 3.
\frac{3x^{2}+\frac{13}{6}x+\frac{1}{6}\times 1933\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Combine -\frac{1}{6}x\sqrt{1933} and \frac{1}{6}\sqrt{1933}x to get 0.
\frac{3x^{2}+\frac{13}{6}x+\frac{1933}{6}\left(-\frac{1}{18}\right)+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Multiply \frac{1}{6} and 1933 to get \frac{1933}{6}.
\frac{3x^{2}+\frac{13}{6}x+\frac{1933\left(-1\right)}{6\times 18}+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Multiply \frac{1933}{6} times -\frac{1}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{3x^{2}+\frac{13}{6}x+\frac{-1933}{108}+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Do the multiplications in the fraction \frac{1933\left(-1\right)}{6\times 18}.
\frac{3x^{2}+\frac{13}{6}x-\frac{1933}{108}+\frac{1}{6}\sqrt{1933}\times \frac{13}{18}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Fraction \frac{-1933}{108} can be rewritten as -\frac{1933}{108} by extracting the negative sign.
\frac{3x^{2}+\frac{13}{6}x-\frac{1933}{108}+\frac{1\times 13}{6\times 18}\sqrt{1933}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Multiply \frac{1}{6} times \frac{13}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{3x^{2}+\frac{13}{6}x-\frac{1933}{108}+\frac{13}{108}\sqrt{1933}+\frac{13}{6}x+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Do the multiplications in the fraction \frac{1\times 13}{6\times 18}.
\frac{3x^{2}+\frac{13}{3}x-\frac{1933}{108}+\frac{13}{108}\sqrt{1933}+\frac{13}{6}\left(-\frac{1}{18}\right)\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Combine \frac{13}{6}x and \frac{13}{6}x to get \frac{13}{3}x.
\frac{3x^{2}+\frac{13}{3}x-\frac{1933}{108}+\frac{13}{108}\sqrt{1933}+\frac{13\left(-1\right)}{6\times 18}\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Multiply \frac{13}{6} times -\frac{1}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{3x^{2}+\frac{13}{3}x-\frac{1933}{108}+\frac{13}{108}\sqrt{1933}+\frac{-13}{108}\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Do the multiplications in the fraction \frac{13\left(-1\right)}{6\times 18}.
\frac{3x^{2}+\frac{13}{3}x-\frac{1933}{108}+\frac{13}{108}\sqrt{1933}-\frac{13}{108}\sqrt{1933}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Fraction \frac{-13}{108} can be rewritten as -\frac{13}{108} by extracting the negative sign.
\frac{3x^{2}+\frac{13}{3}x-\frac{1933}{108}+\frac{13}{6}\times \frac{13}{18}}{x-2}
Combine \frac{13}{108}\sqrt{1933} and -\frac{13}{108}\sqrt{1933} to get 0.
\frac{3x^{2}+\frac{13}{3}x-\frac{1933}{108}+\frac{13\times 13}{6\times 18}}{x-2}
Multiply \frac{13}{6} times \frac{13}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{3x^{2}+\frac{13}{3}x-\frac{1933}{108}+\frac{169}{108}}{x-2}
Do the multiplications in the fraction \frac{13\times 13}{6\times 18}.
\frac{3x^{2}+\frac{13}{3}x+\frac{-1933+169}{108}}{x-2}
Since -\frac{1933}{108} and \frac{169}{108} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+\frac{13}{3}x+\frac{-1764}{108}}{x-2}
Add -1933 and 169 to get -1764.
\frac{3x^{2}+\frac{13}{3}x-\frac{49}{3}}{x-2}
Reduce the fraction \frac{-1764}{108} to lowest terms by extracting and canceling out 36.