Evaluate
\left(8-x\right)\left(2x-5\right)
Factor
\left(8-x\right)\left(2x-5\right)
Graph
Share
Copied to clipboard
11x-40-2x^{2}+10x
Combine 3x and 8x to get 11x.
21x-40-2x^{2}
Combine 11x and 10x to get 21x.
-2x^{2}+21x-40
Multiply and combine like terms.
a+b=21 ab=-2\left(-40\right)=80
Factor the expression by grouping. First, the expression needs to be rewritten as -2x^{2}+ax+bx-40. To find a and b, set up a system to be solved.
1,80 2,40 4,20 5,16 8,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 80.
1+80=81 2+40=42 4+20=24 5+16=21 8+10=18
Calculate the sum for each pair.
a=16 b=5
The solution is the pair that gives sum 21.
\left(-2x^{2}+16x\right)+\left(5x-40\right)
Rewrite -2x^{2}+21x-40 as \left(-2x^{2}+16x\right)+\left(5x-40\right).
2x\left(-x+8\right)-5\left(-x+8\right)
Factor out 2x in the first and -5 in the second group.
\left(-x+8\right)\left(2x-5\right)
Factor out common term -x+8 by using distributive property.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}