Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}+3x-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\times 6\left(-4\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{9-4\times 6\left(-4\right)}}{2\times 6}
Square 3.
x=\frac{-3±\sqrt{9-24\left(-4\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-3±\sqrt{9+96}}{2\times 6}
Multiply -24 times -4.
x=\frac{-3±\sqrt{105}}{2\times 6}
Add 9 to 96.
x=\frac{-3±\sqrt{105}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{105}-3}{12}
Now solve the equation x=\frac{-3±\sqrt{105}}{12} when ± is plus. Add -3 to \sqrt{105}.
x=\frac{\sqrt{105}}{12}-\frac{1}{4}
Divide -3+\sqrt{105} by 12.
x=\frac{-\sqrt{105}-3}{12}
Now solve the equation x=\frac{-3±\sqrt{105}}{12} when ± is minus. Subtract \sqrt{105} from -3.
x=-\frac{\sqrt{105}}{12}-\frac{1}{4}
Divide -3-\sqrt{105} by 12.
6x^{2}+3x-4=6\left(x-\left(\frac{\sqrt{105}}{12}-\frac{1}{4}\right)\right)\left(x-\left(-\frac{\sqrt{105}}{12}-\frac{1}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{4}+\frac{\sqrt{105}}{12} for x_{1} and -\frac{1}{4}-\frac{\sqrt{105}}{12} for x_{2}.