Solve for x
x=0
Graph
Share
Copied to clipboard
\left(3x+2\right)^{2}=\left(\sqrt{\left(3x+2\right)^{2}+x^{2}}\right)^{2}
Square both sides of the equation.
9x^{2}+12x+4=\left(\sqrt{\left(3x+2\right)^{2}+x^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x+4=\left(\sqrt{9x^{2}+12x+4+x^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
9x^{2}+12x+4=\left(\sqrt{10x^{2}+12x+4}\right)^{2}
Combine 9x^{2} and x^{2} to get 10x^{2}.
9x^{2}+12x+4=10x^{2}+12x+4
Calculate \sqrt{10x^{2}+12x+4} to the power of 2 and get 10x^{2}+12x+4.
9x^{2}+12x+4-10x^{2}=12x+4
Subtract 10x^{2} from both sides.
-x^{2}+12x+4=12x+4
Combine 9x^{2} and -10x^{2} to get -x^{2}.
-x^{2}+12x+4-12x=4
Subtract 12x from both sides.
-x^{2}+4=4
Combine 12x and -12x to get 0.
-x^{2}=4-4
Subtract 4 from both sides.
-x^{2}=0
Subtract 4 from 4 to get 0.
x^{2}=0
Divide both sides by -1. Zero divided by any non-zero number gives zero.
x=0 x=0
Take the square root of both sides of the equation.
x=0
The equation is now solved. Solutions are the same.
3\times 0+2=\sqrt{\left(3\times 0+2\right)^{2}+0^{2}}
Substitute 0 for x in the equation 3x+2=\sqrt{\left(3x+2\right)^{2}+x^{2}}.
2=2
Simplify. The value x=0 satisfies the equation.
x=0
Equation 3x+2=\sqrt{\left(3x+2\right)^{2}+x^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}