Solve for x
x = \frac{301}{288} = 1\frac{13}{288} \approx 1.045138889
Graph
Share
Copied to clipboard
252x+1176\left(\frac{5x}{4}-\frac{9}{7}\right)=42\times 13x-504\left(\frac{23x}{21}-\frac{7}{12}\right)
Multiply both sides of the equation by 84, the least common multiple of 4,7,2,21,12.
252x+1176\left(\frac{7\times 5x}{28}-\frac{9\times 4}{28}\right)=42\times 13x-504\left(\frac{23x}{21}-\frac{7}{12}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 7 is 28. Multiply \frac{5x}{4} times \frac{7}{7}. Multiply \frac{9}{7} times \frac{4}{4}.
252x+1176\times \frac{7\times 5x-9\times 4}{28}=42\times 13x-504\left(\frac{23x}{21}-\frac{7}{12}\right)
Since \frac{7\times 5x}{28} and \frac{9\times 4}{28} have the same denominator, subtract them by subtracting their numerators.
252x+1176\times \frac{35x-36}{28}=42\times 13x-504\left(\frac{23x}{21}-\frac{7}{12}\right)
Do the multiplications in 7\times 5x-9\times 4.
252x+42\left(35x-36\right)=42\times 13x-504\left(\frac{23x}{21}-\frac{7}{12}\right)
Cancel out 28, the greatest common factor in 1176 and 28.
252x+1470x-1512=42\times 13x-504\left(\frac{23x}{21}-\frac{7}{12}\right)
Use the distributive property to multiply 42 by 35x-36.
1722x-1512=42\times 13x-504\left(\frac{23x}{21}-\frac{7}{12}\right)
Combine 252x and 1470x to get 1722x.
1722x-1512=546x-504\left(\frac{23x}{21}-\frac{7}{12}\right)
Multiply 42 and 13 to get 546.
1722x-1512=546x-504\left(\frac{4\times 23x}{84}-\frac{7\times 7}{84}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 21 and 12 is 84. Multiply \frac{23x}{21} times \frac{4}{4}. Multiply \frac{7}{12} times \frac{7}{7}.
1722x-1512=546x-504\times \frac{4\times 23x-7\times 7}{84}
Since \frac{4\times 23x}{84} and \frac{7\times 7}{84} have the same denominator, subtract them by subtracting their numerators.
1722x-1512=546x-504\times \frac{92x-49}{84}
Do the multiplications in 4\times 23x-7\times 7.
1722x-1512=546x-6\left(92x-49\right)
Cancel out 84, the greatest common factor in 504 and 84.
1722x-1512=546x-552x+294
Use the distributive property to multiply -6 by 92x-49.
1722x-1512=-6x+294
Combine 546x and -552x to get -6x.
1722x-1512+6x=294
Add 6x to both sides.
1728x-1512=294
Combine 1722x and 6x to get 1728x.
1728x=294+1512
Add 1512 to both sides.
1728x=1806
Add 294 and 1512 to get 1806.
x=\frac{1806}{1728}
Divide both sides by 1728.
x=\frac{301}{288}
Reduce the fraction \frac{1806}{1728} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}