Solve for x
x = \frac{1130 - 10 \sqrt{1105}}{9} \approx 88.620510803
Graph
Share
Copied to clipboard
10\sqrt{x}=500-\left(3x+140\right)
Subtract 3x+140 from both sides of the equation.
10\sqrt{x}=500-3x-140
To find the opposite of 3x+140, find the opposite of each term.
10\sqrt{x}=360-3x
Subtract 140 from 500 to get 360.
\left(10\sqrt{x}\right)^{2}=\left(360-3x\right)^{2}
Square both sides of the equation.
10^{2}\left(\sqrt{x}\right)^{2}=\left(360-3x\right)^{2}
Expand \left(10\sqrt{x}\right)^{2}.
100\left(\sqrt{x}\right)^{2}=\left(360-3x\right)^{2}
Calculate 10 to the power of 2 and get 100.
100x=\left(360-3x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
100x=129600-2160x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(360-3x\right)^{2}.
100x-129600=-2160x+9x^{2}
Subtract 129600 from both sides.
100x-129600+2160x=9x^{2}
Add 2160x to both sides.
2260x-129600=9x^{2}
Combine 100x and 2160x to get 2260x.
2260x-129600-9x^{2}=0
Subtract 9x^{2} from both sides.
-9x^{2}+2260x-129600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2260±\sqrt{2260^{2}-4\left(-9\right)\left(-129600\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 2260 for b, and -129600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2260±\sqrt{5107600-4\left(-9\right)\left(-129600\right)}}{2\left(-9\right)}
Square 2260.
x=\frac{-2260±\sqrt{5107600+36\left(-129600\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-2260±\sqrt{5107600-4665600}}{2\left(-9\right)}
Multiply 36 times -129600.
x=\frac{-2260±\sqrt{442000}}{2\left(-9\right)}
Add 5107600 to -4665600.
x=\frac{-2260±20\sqrt{1105}}{2\left(-9\right)}
Take the square root of 442000.
x=\frac{-2260±20\sqrt{1105}}{-18}
Multiply 2 times -9.
x=\frac{20\sqrt{1105}-2260}{-18}
Now solve the equation x=\frac{-2260±20\sqrt{1105}}{-18} when ± is plus. Add -2260 to 20\sqrt{1105}.
x=\frac{1130-10\sqrt{1105}}{9}
Divide -2260+20\sqrt{1105} by -18.
x=\frac{-20\sqrt{1105}-2260}{-18}
Now solve the equation x=\frac{-2260±20\sqrt{1105}}{-18} when ± is minus. Subtract 20\sqrt{1105} from -2260.
x=\frac{10\sqrt{1105}+1130}{9}
Divide -2260-20\sqrt{1105} by -18.
x=\frac{1130-10\sqrt{1105}}{9} x=\frac{10\sqrt{1105}+1130}{9}
The equation is now solved.
3\times \frac{1130-10\sqrt{1105}}{9}+10\sqrt{\frac{1130-10\sqrt{1105}}{9}}+140=500
Substitute \frac{1130-10\sqrt{1105}}{9} for x in the equation 3x+10\sqrt{x}+140=500.
500=500
Simplify. The value x=\frac{1130-10\sqrt{1105}}{9} satisfies the equation.
3\times \frac{10\sqrt{1105}+1130}{9}+10\sqrt{\frac{10\sqrt{1105}+1130}{9}}+140=500
Substitute \frac{10\sqrt{1105}+1130}{9} for x in the equation 3x+10\sqrt{x}+140=500.
\frac{20}{3}\times 1105^{\frac{1}{2}}+\frac{1600}{3}=500
Simplify. The value x=\frac{10\sqrt{1105}+1130}{9} does not satisfy the equation.
x=\frac{1130-10\sqrt{1105}}{9}
Equation 10\sqrt{x}=360-3x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}