Solve for x
x=0.6
Graph
Share
Copied to clipboard
3x+\frac{18}{20}=2.7
Expand \frac{1.8}{2} by multiplying both numerator and the denominator by 10.
3x+\frac{9}{10}=2.7
Reduce the fraction \frac{18}{20} to lowest terms by extracting and canceling out 2.
3x=2.7-\frac{9}{10}
Subtract \frac{9}{10} from both sides.
3x=\frac{27}{10}-\frac{9}{10}
Convert decimal number 2.7 to fraction \frac{27}{10}.
3x=\frac{27-9}{10}
Since \frac{27}{10} and \frac{9}{10} have the same denominator, subtract them by subtracting their numerators.
3x=\frac{18}{10}
Subtract 9 from 27 to get 18.
3x=\frac{9}{5}
Reduce the fraction \frac{18}{10} to lowest terms by extracting and canceling out 2.
x=\frac{\frac{9}{5}}{3}
Divide both sides by 3.
x=\frac{9}{5\times 3}
Express \frac{\frac{9}{5}}{3} as a single fraction.
x=\frac{9}{15}
Multiply 5 and 3 to get 15.
x=\frac{3}{5}
Reduce the fraction \frac{9}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}