Solve for x
x=10
Graph
Share
Copied to clipboard
\sqrt{6x+4}=38-3x
Subtract 3x from both sides of the equation.
\left(\sqrt{6x+4}\right)^{2}=\left(38-3x\right)^{2}
Square both sides of the equation.
6x+4=\left(38-3x\right)^{2}
Calculate \sqrt{6x+4} to the power of 2 and get 6x+4.
6x+4=1444-228x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(38-3x\right)^{2}.
6x+4-1444=-228x+9x^{2}
Subtract 1444 from both sides.
6x-1440=-228x+9x^{2}
Subtract 1444 from 4 to get -1440.
6x-1440+228x=9x^{2}
Add 228x to both sides.
234x-1440=9x^{2}
Combine 6x and 228x to get 234x.
234x-1440-9x^{2}=0
Subtract 9x^{2} from both sides.
-9x^{2}+234x-1440=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-234±\sqrt{234^{2}-4\left(-9\right)\left(-1440\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 234 for b, and -1440 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-234±\sqrt{54756-4\left(-9\right)\left(-1440\right)}}{2\left(-9\right)}
Square 234.
x=\frac{-234±\sqrt{54756+36\left(-1440\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-234±\sqrt{54756-51840}}{2\left(-9\right)}
Multiply 36 times -1440.
x=\frac{-234±\sqrt{2916}}{2\left(-9\right)}
Add 54756 to -51840.
x=\frac{-234±54}{2\left(-9\right)}
Take the square root of 2916.
x=\frac{-234±54}{-18}
Multiply 2 times -9.
x=-\frac{180}{-18}
Now solve the equation x=\frac{-234±54}{-18} when ± is plus. Add -234 to 54.
x=10
Divide -180 by -18.
x=-\frac{288}{-18}
Now solve the equation x=\frac{-234±54}{-18} when ± is minus. Subtract 54 from -234.
x=16
Divide -288 by -18.
x=10 x=16
The equation is now solved.
3\times 10+\sqrt{6\times 10+4}=38
Substitute 10 for x in the equation 3x+\sqrt{6x+4}=38.
38=38
Simplify. The value x=10 satisfies the equation.
3\times 16+\sqrt{6\times 16+4}=38
Substitute 16 for x in the equation 3x+\sqrt{6x+4}=38.
58=38
Simplify. The value x=16 does not satisfy the equation.
x=10
Equation \sqrt{6x+4}=38-3x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}