Solve for x
x=-2
Graph
Share
Copied to clipboard
\sqrt{4x+9}=-5-3x
Subtract 3x from both sides of the equation.
\left(\sqrt{4x+9}\right)^{2}=\left(-5-3x\right)^{2}
Square both sides of the equation.
4x+9=\left(-5-3x\right)^{2}
Calculate \sqrt{4x+9} to the power of 2 and get 4x+9.
4x+9=25+30x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-5-3x\right)^{2}.
4x+9-25=30x+9x^{2}
Subtract 25 from both sides.
4x-16=30x+9x^{2}
Subtract 25 from 9 to get -16.
4x-16-30x=9x^{2}
Subtract 30x from both sides.
-26x-16=9x^{2}
Combine 4x and -30x to get -26x.
-26x-16-9x^{2}=0
Subtract 9x^{2} from both sides.
-9x^{2}-26x-16=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-26 ab=-9\left(-16\right)=144
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -9x^{2}+ax+bx-16. To find a and b, set up a system to be solved.
-1,-144 -2,-72 -3,-48 -4,-36 -6,-24 -8,-18 -9,-16 -12,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 144.
-1-144=-145 -2-72=-74 -3-48=-51 -4-36=-40 -6-24=-30 -8-18=-26 -9-16=-25 -12-12=-24
Calculate the sum for each pair.
a=-8 b=-18
The solution is the pair that gives sum -26.
\left(-9x^{2}-8x\right)+\left(-18x-16\right)
Rewrite -9x^{2}-26x-16 as \left(-9x^{2}-8x\right)+\left(-18x-16\right).
-x\left(9x+8\right)-2\left(9x+8\right)
Factor out -x in the first and -2 in the second group.
\left(9x+8\right)\left(-x-2\right)
Factor out common term 9x+8 by using distributive property.
x=-\frac{8}{9} x=-2
To find equation solutions, solve 9x+8=0 and -x-2=0.
3\left(-\frac{8}{9}\right)+\sqrt{4\left(-\frac{8}{9}\right)+9}=-5
Substitute -\frac{8}{9} for x in the equation 3x+\sqrt{4x+9}=-5.
-\frac{1}{3}=-5
Simplify. The value x=-\frac{8}{9} does not satisfy the equation.
3\left(-2\right)+\sqrt{4\left(-2\right)+9}=-5
Substitute -2 for x in the equation 3x+\sqrt{4x+9}=-5.
-5=-5
Simplify. The value x=-2 satisfies the equation.
x=-2
Equation \sqrt{4x+9}=-3x-5 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}