Solve for x
x=\frac{6}{9-z}
z\neq 9
Solve for z
z=9-\frac{6}{x}
x\neq 0
Share
Copied to clipboard
3x+6x-zx-6=0
Use the distributive property to multiply 6-z by x.
9x-zx-6=0
Combine 3x and 6x to get 9x.
9x-zx=6
Add 6 to both sides. Anything plus zero gives itself.
\left(9-z\right)x=6
Combine all terms containing x.
\frac{\left(9-z\right)x}{9-z}=\frac{6}{9-z}
Divide both sides by 9-z.
x=\frac{6}{9-z}
Dividing by 9-z undoes the multiplication by 9-z.
3x+6x-zx-6=0
Use the distributive property to multiply 6-z by x.
9x-zx-6=0
Combine 3x and 6x to get 9x.
-zx-6=-9x
Subtract 9x from both sides. Anything subtracted from zero gives its negation.
-zx=-9x+6
Add 6 to both sides.
\left(-x\right)z=6-9x
The equation is in standard form.
\frac{\left(-x\right)z}{-x}=\frac{6-9x}{-x}
Divide both sides by -x.
z=\frac{6-9x}{-x}
Dividing by -x undoes the multiplication by -x.
z=9-\frac{6}{x}
Divide -9x+6 by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}