Solve for x
x=\frac{5\sqrt{201}}{6}+\frac{5}{2}\approx 14.314539066
x=-\frac{5\sqrt{201}}{6}+\frac{5}{2}\approx -9.314539066
Graph
Share
Copied to clipboard
3x^{2}-15x=400
Use the distributive property to multiply 3x by x-5.
3x^{2}-15x-400=0
Subtract 400 from both sides.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\left(-400\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -15 for b, and -400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\left(-400\right)}}{2\times 3}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-12\left(-400\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-15\right)±\sqrt{225+4800}}{2\times 3}
Multiply -12 times -400.
x=\frac{-\left(-15\right)±\sqrt{5025}}{2\times 3}
Add 225 to 4800.
x=\frac{-\left(-15\right)±5\sqrt{201}}{2\times 3}
Take the square root of 5025.
x=\frac{15±5\sqrt{201}}{2\times 3}
The opposite of -15 is 15.
x=\frac{15±5\sqrt{201}}{6}
Multiply 2 times 3.
x=\frac{5\sqrt{201}+15}{6}
Now solve the equation x=\frac{15±5\sqrt{201}}{6} when ± is plus. Add 15 to 5\sqrt{201}.
x=\frac{5\sqrt{201}}{6}+\frac{5}{2}
Divide 15+5\sqrt{201} by 6.
x=\frac{15-5\sqrt{201}}{6}
Now solve the equation x=\frac{15±5\sqrt{201}}{6} when ± is minus. Subtract 5\sqrt{201} from 15.
x=-\frac{5\sqrt{201}}{6}+\frac{5}{2}
Divide 15-5\sqrt{201} by 6.
x=\frac{5\sqrt{201}}{6}+\frac{5}{2} x=-\frac{5\sqrt{201}}{6}+\frac{5}{2}
The equation is now solved.
3x^{2}-15x=400
Use the distributive property to multiply 3x by x-5.
\frac{3x^{2}-15x}{3}=\frac{400}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{15}{3}\right)x=\frac{400}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-5x=\frac{400}{3}
Divide -15 by 3.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\frac{400}{3}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=\frac{400}{3}+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{1675}{12}
Add \frac{400}{3} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{2}\right)^{2}=\frac{1675}{12}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1675}{12}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{5\sqrt{201}}{6} x-\frac{5}{2}=-\frac{5\sqrt{201}}{6}
Simplify.
x=\frac{5\sqrt{201}}{6}+\frac{5}{2} x=-\frac{5\sqrt{201}}{6}+\frac{5}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}