Solve for x
x=4
x=0
Graph
Share
Copied to clipboard
3x^{2}-12x=4x\left(x-4\right)
Use the distributive property to multiply 3x by x-4.
3x^{2}-12x=4x^{2}-16x
Use the distributive property to multiply 4x by x-4.
3x^{2}-12x-4x^{2}=-16x
Subtract 4x^{2} from both sides.
-x^{2}-12x=-16x
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}-12x+16x=0
Add 16x to both sides.
-x^{2}+4x=0
Combine -12x and 16x to get 4x.
x\left(-x+4\right)=0
Factor out x.
x=0 x=4
To find equation solutions, solve x=0 and -x+4=0.
3x^{2}-12x=4x\left(x-4\right)
Use the distributive property to multiply 3x by x-4.
3x^{2}-12x=4x^{2}-16x
Use the distributive property to multiply 4x by x-4.
3x^{2}-12x-4x^{2}=-16x
Subtract 4x^{2} from both sides.
-x^{2}-12x=-16x
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}-12x+16x=0
Add 16x to both sides.
-x^{2}+4x=0
Combine -12x and 16x to get 4x.
x=\frac{-4±\sqrt{4^{2}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±4}{2\left(-1\right)}
Take the square root of 4^{2}.
x=\frac{-4±4}{-2}
Multiply 2 times -1.
x=\frac{0}{-2}
Now solve the equation x=\frac{-4±4}{-2} when ± is plus. Add -4 to 4.
x=0
Divide 0 by -2.
x=-\frac{8}{-2}
Now solve the equation x=\frac{-4±4}{-2} when ± is minus. Subtract 4 from -4.
x=4
Divide -8 by -2.
x=0 x=4
The equation is now solved.
3x^{2}-12x=4x\left(x-4\right)
Use the distributive property to multiply 3x by x-4.
3x^{2}-12x=4x^{2}-16x
Use the distributive property to multiply 4x by x-4.
3x^{2}-12x-4x^{2}=-16x
Subtract 4x^{2} from both sides.
-x^{2}-12x=-16x
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}-12x+16x=0
Add 16x to both sides.
-x^{2}+4x=0
Combine -12x and 16x to get 4x.
\frac{-x^{2}+4x}{-1}=\frac{0}{-1}
Divide both sides by -1.
x^{2}+\frac{4}{-1}x=\frac{0}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-4x=\frac{0}{-1}
Divide 4 by -1.
x^{2}-4x=0
Divide 0 by -1.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=4
Square -2.
\left(x-2\right)^{2}=4
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-2=2 x-2=-2
Simplify.
x=4 x=0
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}