Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
3x+4=\sqrt{x^{2}+6}
Subtract -4 from both sides of the equation.
\left(3x+4\right)^{2}=\left(\sqrt{x^{2}+6}\right)^{2}
Square both sides of the equation.
9x^{2}+24x+16=\left(\sqrt{x^{2}+6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+4\right)^{2}.
9x^{2}+24x+16=x^{2}+6
Calculate \sqrt{x^{2}+6} to the power of 2 and get x^{2}+6.
9x^{2}+24x+16-x^{2}=6
Subtract x^{2} from both sides.
8x^{2}+24x+16=6
Combine 9x^{2} and -x^{2} to get 8x^{2}.
8x^{2}+24x+16-6=0
Subtract 6 from both sides.
8x^{2}+24x+10=0
Subtract 6 from 16 to get 10.
4x^{2}+12x+5=0
Divide both sides by 2.
a+b=12 ab=4\times 5=20
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
1,20 2,10 4,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 20.
1+20=21 2+10=12 4+5=9
Calculate the sum for each pair.
a=2 b=10
The solution is the pair that gives sum 12.
\left(4x^{2}+2x\right)+\left(10x+5\right)
Rewrite 4x^{2}+12x+5 as \left(4x^{2}+2x\right)+\left(10x+5\right).
2x\left(2x+1\right)+5\left(2x+1\right)
Factor out 2x in the first and 5 in the second group.
\left(2x+1\right)\left(2x+5\right)
Factor out common term 2x+1 by using distributive property.
x=-\frac{1}{2} x=-\frac{5}{2}
To find equation solutions, solve 2x+1=0 and 2x+5=0.
3\left(-\frac{1}{2}\right)=\sqrt{\left(-\frac{1}{2}\right)^{2}+6}-4
Substitute -\frac{1}{2} for x in the equation 3x=\sqrt{x^{2}+6}-4.
-\frac{3}{2}=-\frac{3}{2}
Simplify. The value x=-\frac{1}{2} satisfies the equation.
3\left(-\frac{5}{2}\right)=\sqrt{\left(-\frac{5}{2}\right)^{2}+6}-4
Substitute -\frac{5}{2} for x in the equation 3x=\sqrt{x^{2}+6}-4.
-\frac{15}{2}=-\frac{1}{2}
Simplify. The value x=-\frac{5}{2} does not satisfy the equation.
x=-\frac{1}{2}
Equation 3x+4=\sqrt{x^{2}+6} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}