Solve for k
k=4-p
Solve for p
p=4-k
Share
Copied to clipboard
5p-10=4-5k+6
Combine 3p and 2p to get 5p.
5p-10=10-5k
Add 4 and 6 to get 10.
10-5k=5p-10
Swap sides so that all variable terms are on the left hand side.
-5k=5p-10-10
Subtract 10 from both sides.
-5k=5p-20
Subtract 10 from -10 to get -20.
\frac{-5k}{-5}=\frac{5p-20}{-5}
Divide both sides by -5.
k=\frac{5p-20}{-5}
Dividing by -5 undoes the multiplication by -5.
k=4-p
Divide -20+5p by -5.
5p-10=4-5k+6
Combine 3p and 2p to get 5p.
5p-10=10-5k
Add 4 and 6 to get 10.
5p=10-5k+10
Add 10 to both sides.
5p=20-5k
Add 10 and 10 to get 20.
\frac{5p}{5}=\frac{20-5k}{5}
Divide both sides by 5.
p=\frac{20-5k}{5}
Dividing by 5 undoes the multiplication by 5.
p=4-k
Divide 20-5k by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}