Solve for m (complex solution)
\left\{\begin{matrix}m=\frac{r^{2}\left(rw^{2}+3g\right)}{y}\text{, }&y\neq 0\text{ and }r\neq 0\\m\in \mathrm{C}\text{, }&g=-\frac{rw^{2}}{3}\text{ and }y=0\text{ and }r\neq 0\end{matrix}\right.
Solve for g
g=-\frac{rw^{2}}{3}+\frac{my}{3r^{2}}
r\neq 0
Solve for m
\left\{\begin{matrix}m=\frac{r^{2}\left(rw^{2}+3g\right)}{y}\text{, }&y\neq 0\text{ and }r\neq 0\\m\in \mathrm{R}\text{, }&g=-\frac{rw^{2}}{3}\text{ and }y=0\text{ and }r\neq 0\end{matrix}\right.
Share
Copied to clipboard
3gr^{2}=ym-w^{2}rr^{2}
Multiply both sides of the equation by r^{2}.
3gr^{2}=ym-w^{2}r^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
ym-w^{2}r^{3}=3gr^{2}
Swap sides so that all variable terms are on the left hand side.
ym=3gr^{2}+w^{2}r^{3}
Add w^{2}r^{3} to both sides.
\frac{ym}{y}=\frac{r^{2}\left(rw^{2}+3g\right)}{y}
Divide both sides by y.
m=\frac{r^{2}\left(rw^{2}+3g\right)}{y}
Dividing by y undoes the multiplication by y.
3gr^{2}=ym-w^{2}rr^{2}
Multiply both sides of the equation by r^{2}.
3gr^{2}=ym-w^{2}r^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
3gr^{2}=my-w^{2}r^{3}
Reorder the terms.
3r^{2}g=my-w^{2}r^{3}
The equation is in standard form.
\frac{3r^{2}g}{3r^{2}}=\frac{my-w^{2}r^{3}}{3r^{2}}
Divide both sides by 3r^{2}.
g=\frac{my-w^{2}r^{3}}{3r^{2}}
Dividing by 3r^{2} undoes the multiplication by 3r^{2}.
g=-\frac{rw^{2}}{3}+\frac{my}{3r^{2}}
Divide my-w^{2}r^{3} by 3r^{2}.
3gr^{2}=ym-w^{2}rr^{2}
Multiply both sides of the equation by r^{2}.
3gr^{2}=ym-w^{2}r^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
ym-w^{2}r^{3}=3gr^{2}
Swap sides so that all variable terms are on the left hand side.
ym=3gr^{2}+w^{2}r^{3}
Add w^{2}r^{3} to both sides.
\frac{ym}{y}=\frac{r^{2}\left(rw^{2}+3g\right)}{y}
Divide both sides by y.
m=\frac{r^{2}\left(rw^{2}+3g\right)}{y}
Dividing by y undoes the multiplication by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}