Evaluate
\frac{3999998}{19}\approx 210526.210526316
Factor
\frac{2 \cdot 17 \cdot 71 \cdot 1657}{19} = 210526\frac{4}{19} = 210526.2105263158
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)3999998}\\\end{array}
Use the 1^{st} digit 3 from dividend 3999998
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)3999998}\\\end{array}
Since 3 is less than 19, use the next digit 9 from dividend 3999998 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)3999998}\\\end{array}
Use the 2^{nd} digit 9 from dividend 3999998
\begin{array}{l}\phantom{19)}02\phantom{4}\\19\overline{)3999998}\\\phantom{19)}\underline{\phantom{}38\phantom{99999}}\\\phantom{19)9}1\\\end{array}
Find closest multiple of 19 to 39. We see that 2 \times 19 = 38 is the nearest. Now subtract 38 from 39 to get reminder 1. Add 2 to quotient.
\begin{array}{l}\phantom{19)}02\phantom{5}\\19\overline{)3999998}\\\phantom{19)}\underline{\phantom{}38\phantom{99999}}\\\phantom{19)9}19\\\end{array}
Use the 3^{rd} digit 9 from dividend 3999998
\begin{array}{l}\phantom{19)}021\phantom{6}\\19\overline{)3999998}\\\phantom{19)}\underline{\phantom{}38\phantom{99999}}\\\phantom{19)9}19\\\phantom{19)}\underline{\phantom{9}19\phantom{9999}}\\\phantom{19)999}0\\\end{array}
Find closest multiple of 19 to 19. We see that 1 \times 19 = 19 is the nearest. Now subtract 19 from 19 to get reminder 0. Add 1 to quotient.
\begin{array}{l}\phantom{19)}021\phantom{7}\\19\overline{)3999998}\\\phantom{19)}\underline{\phantom{}38\phantom{99999}}\\\phantom{19)9}19\\\phantom{19)}\underline{\phantom{9}19\phantom{9999}}\\\phantom{19)999}9\\\end{array}
Use the 4^{th} digit 9 from dividend 3999998
\begin{array}{l}\phantom{19)}0210\phantom{8}\\19\overline{)3999998}\\\phantom{19)}\underline{\phantom{}38\phantom{99999}}\\\phantom{19)9}19\\\phantom{19)}\underline{\phantom{9}19\phantom{9999}}\\\phantom{19)999}9\\\end{array}
Since 9 is less than 19, use the next digit 9 from dividend 3999998 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0210\phantom{9}\\19\overline{)3999998}\\\phantom{19)}\underline{\phantom{}38\phantom{99999}}\\\phantom{19)9}19\\\phantom{19)}\underline{\phantom{9}19\phantom{9999}}\\\phantom{19)999}99\\\end{array}
Use the 5^{th} digit 9 from dividend 3999998
\begin{array}{l}\phantom{19)}02105\phantom{10}\\19\overline{)3999998}\\\phantom{19)}\underline{\phantom{}38\phantom{99999}}\\\phantom{19)9}19\\\phantom{19)}\underline{\phantom{9}19\phantom{9999}}\\\phantom{19)999}99\\\phantom{19)}\underline{\phantom{999}95\phantom{99}}\\\phantom{19)9999}4\\\end{array}
Find closest multiple of 19 to 99. We see that 5 \times 19 = 95 is the nearest. Now subtract 95 from 99 to get reminder 4. Add 5 to quotient.
\begin{array}{l}\phantom{19)}02105\phantom{11}\\19\overline{)3999998}\\\phantom{19)}\underline{\phantom{}38\phantom{99999}}\\\phantom{19)9}19\\\phantom{19)}\underline{\phantom{9}19\phantom{9999}}\\\phantom{19)999}99\\\phantom{19)}\underline{\phantom{999}95\phantom{99}}\\\phantom{19)9999}49\\\end{array}
Use the 6^{th} digit 9 from dividend 3999998
\begin{array}{l}\phantom{19)}021052\phantom{12}\\19\overline{)3999998}\\\phantom{19)}\underline{\phantom{}38\phantom{99999}}\\\phantom{19)9}19\\\phantom{19)}\underline{\phantom{9}19\phantom{9999}}\\\phantom{19)999}99\\\phantom{19)}\underline{\phantom{999}95\phantom{99}}\\\phantom{19)9999}49\\\phantom{19)}\underline{\phantom{9999}38\phantom{9}}\\\phantom{19)9999}11\\\end{array}
Find closest multiple of 19 to 49. We see that 2 \times 19 = 38 is the nearest. Now subtract 38 from 49 to get reminder 11. Add 2 to quotient.
\begin{array}{l}\phantom{19)}021052\phantom{13}\\19\overline{)3999998}\\\phantom{19)}\underline{\phantom{}38\phantom{99999}}\\\phantom{19)9}19\\\phantom{19)}\underline{\phantom{9}19\phantom{9999}}\\\phantom{19)999}99\\\phantom{19)}\underline{\phantom{999}95\phantom{99}}\\\phantom{19)9999}49\\\phantom{19)}\underline{\phantom{9999}38\phantom{9}}\\\phantom{19)9999}118\\\end{array}
Use the 7^{th} digit 8 from dividend 3999998
\begin{array}{l}\phantom{19)}0210526\phantom{14}\\19\overline{)3999998}\\\phantom{19)}\underline{\phantom{}38\phantom{99999}}\\\phantom{19)9}19\\\phantom{19)}\underline{\phantom{9}19\phantom{9999}}\\\phantom{19)999}99\\\phantom{19)}\underline{\phantom{999}95\phantom{99}}\\\phantom{19)9999}49\\\phantom{19)}\underline{\phantom{9999}38\phantom{9}}\\\phantom{19)9999}118\\\phantom{19)}\underline{\phantom{9999}114\phantom{}}\\\phantom{19)999999}4\\\end{array}
Find closest multiple of 19 to 118. We see that 6 \times 19 = 114 is the nearest. Now subtract 114 from 118 to get reminder 4. Add 6 to quotient.
\text{Quotient: }210526 \text{Reminder: }4
Since 4 is less than 19, stop the division. The reminder is 4. The topmost line 0210526 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 210526.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}