Evaluate
6
Factor
2\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{666)}\phantom{1}\\666\overline{)3996}\\\end{array}
Use the 1^{st} digit 3 from dividend 3996
\begin{array}{l}\phantom{666)}0\phantom{2}\\666\overline{)3996}\\\end{array}
Since 3 is less than 666, use the next digit 9 from dividend 3996 and add 0 to the quotient
\begin{array}{l}\phantom{666)}0\phantom{3}\\666\overline{)3996}\\\end{array}
Use the 2^{nd} digit 9 from dividend 3996
\begin{array}{l}\phantom{666)}00\phantom{4}\\666\overline{)3996}\\\end{array}
Since 39 is less than 666, use the next digit 9 from dividend 3996 and add 0 to the quotient
\begin{array}{l}\phantom{666)}00\phantom{5}\\666\overline{)3996}\\\end{array}
Use the 3^{rd} digit 9 from dividend 3996
\begin{array}{l}\phantom{666)}000\phantom{6}\\666\overline{)3996}\\\end{array}
Since 399 is less than 666, use the next digit 6 from dividend 3996 and add 0 to the quotient
\begin{array}{l}\phantom{666)}000\phantom{7}\\666\overline{)3996}\\\end{array}
Use the 4^{th} digit 6 from dividend 3996
\begin{array}{l}\phantom{666)}0006\phantom{8}\\666\overline{)3996}\\\phantom{666)}\underline{\phantom{}3996\phantom{}}\\\phantom{666)9999}0\\\end{array}
Find closest multiple of 666 to 3996. We see that 6 \times 666 = 3996 is the nearest. Now subtract 3996 from 3996 to get reminder 0. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }0
Since 0 is less than 666, stop the division. The reminder is 0. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}