Solve for x
x=3
Solve for x (complex solution)
x=\frac{2\pi n_{1}i}{\ln(\frac{11}{10})}+\log_{\frac{11}{10}}\left(\frac{1331}{1000}\right)
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\frac{399300}{300000}=\left(1+\frac{10}{100}\right)^{x}
Divide both sides by 300000.
\frac{1331}{1000}=\left(1+\frac{10}{100}\right)^{x}
Reduce the fraction \frac{399300}{300000} to lowest terms by extracting and canceling out 300.
\frac{1331}{1000}=\left(1+\frac{1}{10}\right)^{x}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
\frac{1331}{1000}=\left(\frac{11}{10}\right)^{x}
Add 1 and \frac{1}{10} to get \frac{11}{10}.
\left(\frac{11}{10}\right)^{x}=\frac{1331}{1000}
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{11}{10}\right)^{x})=\log(\frac{1331}{1000})
Take the logarithm of both sides of the equation.
x\log(\frac{11}{10})=\log(\frac{1331}{1000})
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(\frac{1331}{1000})}{\log(\frac{11}{10})}
Divide both sides by \log(\frac{11}{10}).
x=\log_{\frac{11}{10}}\left(\frac{1331}{1000}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}