Evaluate
\frac{133}{16}=8.3125
Factor
\frac{7 \cdot 19}{2 ^ {4}} = 8\frac{5}{16} = 8.3125
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)399}\\\end{array}
Use the 1^{st} digit 3 from dividend 399
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)399}\\\end{array}
Since 3 is less than 48, use the next digit 9 from dividend 399 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)399}\\\end{array}
Use the 2^{nd} digit 9 from dividend 399
\begin{array}{l}\phantom{48)}00\phantom{4}\\48\overline{)399}\\\end{array}
Since 39 is less than 48, use the next digit 9 from dividend 399 and add 0 to the quotient
\begin{array}{l}\phantom{48)}00\phantom{5}\\48\overline{)399}\\\end{array}
Use the 3^{rd} digit 9 from dividend 399
\begin{array}{l}\phantom{48)}008\phantom{6}\\48\overline{)399}\\\phantom{48)}\underline{\phantom{}384\phantom{}}\\\phantom{48)9}15\\\end{array}
Find closest multiple of 48 to 399. We see that 8 \times 48 = 384 is the nearest. Now subtract 384 from 399 to get reminder 15. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }15
Since 15 is less than 48, stop the division. The reminder is 15. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}