Evaluate
\frac{199}{18}\approx 11.055555556
Factor
\frac{199}{2 \cdot 3 ^ {2}} = 11\frac{1}{18} = 11.055555555555555
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)398}\\\end{array}
Use the 1^{st} digit 3 from dividend 398
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)398}\\\end{array}
Since 3 is less than 36, use the next digit 9 from dividend 398 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)398}\\\end{array}
Use the 2^{nd} digit 9 from dividend 398
\begin{array}{l}\phantom{36)}01\phantom{4}\\36\overline{)398}\\\phantom{36)}\underline{\phantom{}36\phantom{9}}\\\phantom{36)9}3\\\end{array}
Find closest multiple of 36 to 39. We see that 1 \times 36 = 36 is the nearest. Now subtract 36 from 39 to get reminder 3. Add 1 to quotient.
\begin{array}{l}\phantom{36)}01\phantom{5}\\36\overline{)398}\\\phantom{36)}\underline{\phantom{}36\phantom{9}}\\\phantom{36)9}38\\\end{array}
Use the 3^{rd} digit 8 from dividend 398
\begin{array}{l}\phantom{36)}011\phantom{6}\\36\overline{)398}\\\phantom{36)}\underline{\phantom{}36\phantom{9}}\\\phantom{36)9}38\\\phantom{36)}\underline{\phantom{9}36\phantom{}}\\\phantom{36)99}2\\\end{array}
Find closest multiple of 36 to 38. We see that 1 \times 36 = 36 is the nearest. Now subtract 36 from 38 to get reminder 2. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }2
Since 2 is less than 36, stop the division. The reminder is 2. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}