Evaluate
\frac{398}{65}\approx 6.123076923
Factor
\frac{2 \cdot 199}{5 \cdot 13} = 6\frac{8}{65} = 6.123076923076923
Share
Copied to clipboard
\begin{array}{l}\phantom{65)}\phantom{1}\\65\overline{)398}\\\end{array}
Use the 1^{st} digit 3 from dividend 398
\begin{array}{l}\phantom{65)}0\phantom{2}\\65\overline{)398}\\\end{array}
Since 3 is less than 65, use the next digit 9 from dividend 398 and add 0 to the quotient
\begin{array}{l}\phantom{65)}0\phantom{3}\\65\overline{)398}\\\end{array}
Use the 2^{nd} digit 9 from dividend 398
\begin{array}{l}\phantom{65)}00\phantom{4}\\65\overline{)398}\\\end{array}
Since 39 is less than 65, use the next digit 8 from dividend 398 and add 0 to the quotient
\begin{array}{l}\phantom{65)}00\phantom{5}\\65\overline{)398}\\\end{array}
Use the 3^{rd} digit 8 from dividend 398
\begin{array}{l}\phantom{65)}006\phantom{6}\\65\overline{)398}\\\phantom{65)}\underline{\phantom{}390\phantom{}}\\\phantom{65)99}8\\\end{array}
Find closest multiple of 65 to 398. We see that 6 \times 65 = 390 is the nearest. Now subtract 390 from 398 to get reminder 8. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }8
Since 8 is less than 65, stop the division. The reminder is 8. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}