Evaluate
\frac{397}{337}\approx 1.178041543
Factor
\frac{397}{337} = 1\frac{60}{337} = 1.1780415430267062
Share
Copied to clipboard
\begin{array}{l}\phantom{337)}\phantom{1}\\337\overline{)397}\\\end{array}
Use the 1^{st} digit 3 from dividend 397
\begin{array}{l}\phantom{337)}0\phantom{2}\\337\overline{)397}\\\end{array}
Since 3 is less than 337, use the next digit 9 from dividend 397 and add 0 to the quotient
\begin{array}{l}\phantom{337)}0\phantom{3}\\337\overline{)397}\\\end{array}
Use the 2^{nd} digit 9 from dividend 397
\begin{array}{l}\phantom{337)}00\phantom{4}\\337\overline{)397}\\\end{array}
Since 39 is less than 337, use the next digit 7 from dividend 397 and add 0 to the quotient
\begin{array}{l}\phantom{337)}00\phantom{5}\\337\overline{)397}\\\end{array}
Use the 3^{rd} digit 7 from dividend 397
\begin{array}{l}\phantom{337)}001\phantom{6}\\337\overline{)397}\\\phantom{337)}\underline{\phantom{}337\phantom{}}\\\phantom{337)9}60\\\end{array}
Find closest multiple of 337 to 397. We see that 1 \times 337 = 337 is the nearest. Now subtract 337 from 397 to get reminder 60. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }60
Since 60 is less than 337, stop the division. The reminder is 60. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}