Evaluate
18
Factor
2\times 3^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)396}\\\end{array}
Use the 1^{st} digit 3 from dividend 396
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)396}\\\end{array}
Since 3 is less than 22, use the next digit 9 from dividend 396 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)396}\\\end{array}
Use the 2^{nd} digit 9 from dividend 396
\begin{array}{l}\phantom{22)}01\phantom{4}\\22\overline{)396}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}17\\\end{array}
Find closest multiple of 22 to 39. We see that 1 \times 22 = 22 is the nearest. Now subtract 22 from 39 to get reminder 17. Add 1 to quotient.
\begin{array}{l}\phantom{22)}01\phantom{5}\\22\overline{)396}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}176\\\end{array}
Use the 3^{rd} digit 6 from dividend 396
\begin{array}{l}\phantom{22)}018\phantom{6}\\22\overline{)396}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}176\\\phantom{22)}\underline{\phantom{}176\phantom{}}\\\phantom{22)999}0\\\end{array}
Find closest multiple of 22 to 176. We see that 8 \times 22 = 176 is the nearest. Now subtract 176 from 176 to get reminder 0. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }0
Since 0 is less than 22, stop the division. The reminder is 0. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}