Evaluate
\frac{99}{32}=3.09375
Factor
\frac{3 ^ {2} \cdot 11}{2 ^ {5}} = 3\frac{3}{32} = 3.09375
Share
Copied to clipboard
\begin{array}{l}\phantom{128)}\phantom{1}\\128\overline{)396}\\\end{array}
Use the 1^{st} digit 3 from dividend 396
\begin{array}{l}\phantom{128)}0\phantom{2}\\128\overline{)396}\\\end{array}
Since 3 is less than 128, use the next digit 9 from dividend 396 and add 0 to the quotient
\begin{array}{l}\phantom{128)}0\phantom{3}\\128\overline{)396}\\\end{array}
Use the 2^{nd} digit 9 from dividend 396
\begin{array}{l}\phantom{128)}00\phantom{4}\\128\overline{)396}\\\end{array}
Since 39 is less than 128, use the next digit 6 from dividend 396 and add 0 to the quotient
\begin{array}{l}\phantom{128)}00\phantom{5}\\128\overline{)396}\\\end{array}
Use the 3^{rd} digit 6 from dividend 396
\begin{array}{l}\phantom{128)}003\phantom{6}\\128\overline{)396}\\\phantom{128)}\underline{\phantom{}384\phantom{}}\\\phantom{128)9}12\\\end{array}
Find closest multiple of 128 to 396. We see that 3 \times 128 = 384 is the nearest. Now subtract 384 from 396 to get reminder 12. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }12
Since 12 is less than 128, stop the division. The reminder is 12. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}